Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linecgr Unicode version

Theorem linecgr 25963
Description: Congruence rule for lines. Theorem 4.17 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 6-Oct-2013.)
Assertion
Ref Expression
linecgr  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  -> 
( ( ( A  =/=  B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\  <. B ,  P >.Cgr
<. B ,  Q >. ) )  ->  <. C ,  P >.Cgr <. C ,  Q >. ) )

Proof of Theorem linecgr
StepHypRef Expression
1 simprlr 740 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) ) )  ->  A  Colinear  <. B ,  C >. )
2 cgr3rflx 25936 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. B ,  C >. >. )
323adant3 977 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  ->  <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. B ,  C >. >. )
43adantr 452 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) ) )  ->  <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. B ,  C >. >. )
5 simprr 734 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) ) )  ->  ( <. A ,  P >.Cgr <. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) )
61, 4, 53jca 1134 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) ) )  ->  ( A  Colinear  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. B ,  C >. >.  /\  ( <. A ,  P >.Cgr
<. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) ) )
7 simprll 739 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) ) )  ->  A  =/=  B )
86, 7jca 519 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) ) )  ->  (
( A  Colinear  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. B ,  C >. >.  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\  <. B ,  P >.Cgr <. B ,  Q >. ) )  /\  A  =/=  B ) )
98ex 424 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  -> 
( ( ( A  =/=  B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\  <. B ,  P >.Cgr
<. B ,  Q >. ) )  ->  ( ( A  Colinear  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. B ,  C >. >.  /\  ( <. A ,  P >.Cgr
<. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) )  /\  A  =/= 
B ) ) )
10 simp1 957 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  ->  N  e.  NN )
11 simp21 990 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
12 simp22 991 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
13 simp23 992 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  ->  C  e.  ( EE `  N ) )
14 simp3l 985 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  ->  P  e.  ( EE `  N ) )
15 simp3r 986 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  ->  Q  e.  ( EE `  N ) )
16 brfs 25961 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
)  /\  Q  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  B >. ,  <. C ,  P >. >.  FiveSeg  <. <. A ,  B >. ,  <. C ,  Q >. >. 
<->  ( A  Colinear  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. B ,  C >. >.  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\  <. B ,  P >.Cgr <. B ,  Q >. ) ) ) )
1716anbi1d 686 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
)  /\  Q  e.  ( EE `  N ) ) )  ->  (
( <. <. A ,  B >. ,  <. C ,  P >. >.  FiveSeg  <. <. A ,  B >. ,  <. C ,  Q >. >.  /\  A  =/=  B )  <->  ( ( A 
Colinear 
<. B ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. B ,  C >. >.  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) )  /\  A  =/= 
B ) ) )
18 fscgr 25962 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
)  /\  Q  e.  ( EE `  N ) ) )  ->  (
( <. <. A ,  B >. ,  <. C ,  P >. >.  FiveSeg  <. <. A ,  B >. ,  <. C ,  Q >. >.  /\  A  =/=  B )  ->  <. C ,  P >.Cgr <. C ,  Q >. ) )
1917, 18sylbird 227 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
)  /\  Q  e.  ( EE `  N ) ) )  ->  (
( ( A  Colinear  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. B ,  C >. >.  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) )  /\  A  =/= 
B )  ->  <. C ,  P >.Cgr <. C ,  Q >. ) )
2010, 11, 12, 13, 14, 11, 12, 13, 15, 19syl333anc 1216 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  -> 
( ( ( A 
Colinear 
<. B ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. B ,  C >. >.  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) )  /\  A  =/= 
B )  ->  <. C ,  P >.Cgr <. C ,  Q >. ) )
219, 20syld 42 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  -> 
( ( ( A  =/=  B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\  <. B ,  P >.Cgr
<. B ,  Q >. ) )  ->  <. C ,  P >.Cgr <. C ,  Q >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    e. wcel 1725    =/= wne 2598   <.cop 3809   class class class wbr 4204   ` cfv 5445   NNcn 9989   EEcee 25775  Cgrccgr 25777  Cgr3ccgr3 25918    Colinear ccolin 25919    FiveSeg cfs 25920
This theorem is referenced by:  linecgrand  25964  lineid  25965
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-oadd 6719  df-er 6896  df-map 7011  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-sup 7437  df-oi 7468  df-card 7815  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-n0 10211  df-z 10272  df-uz 10478  df-rp 10602  df-ico 10911  df-icc 10912  df-fz 11033  df-fzo 11124  df-seq 11312  df-exp 11371  df-hash 11607  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-clim 12270  df-sum 12468  df-ee 25778  df-btwn 25779  df-cgr 25780  df-ofs 25865  df-ifs 25921  df-cgr3 25922  df-colinear 25923  df-fs 25924
  Copyright terms: Public domain W3C validator