Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linecom Structured version   Unicode version

Theorem linecom 26049
Description: Commutativity law for lines. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
linecom  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q ) )  -> 
( PLine Q )  =  ( QLine P
) )

Proof of Theorem linecom
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simp1 957 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  x  e.  ( EE `  N
) )  ->  N  e.  NN )
2 simp3 959 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  x  e.  ( EE `  N
) )  ->  x  e.  ( EE `  N
) )
3 simp21 990 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  x  e.  ( EE `  N
) )  ->  P  e.  ( EE `  N
) )
4 simp22 991 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  x  e.  ( EE `  N
) )  ->  Q  e.  ( EE `  N
) )
5 colinearperm1 25961 . . . . 5  |-  ( ( N  e.  NN  /\  ( x  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  -> 
( x  Colinear  <. P ,  Q >. 
<->  x  Colinear  <. Q ,  P >. ) )
61, 2, 3, 4, 5syl13anc 1186 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  x  e.  ( EE `  N
) )  ->  (
x  Colinear  <. P ,  Q >.  <-> 
x  Colinear  <. Q ,  P >. ) )
763expa 1153 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
) )  /\  x  e.  ( EE `  N
) )  ->  (
x  Colinear  <. P ,  Q >.  <-> 
x  Colinear  <. Q ,  P >. ) )
87rabbidva 2939 . 2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q ) )  ->  { x  e.  ( EE `  N )  |  x  Colinear  <. P ,  Q >. }  =  { x  e.  ( EE `  N
)  |  x  Colinear  <. Q ,  P >. } )
9 fvline2 26045 . 2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q ) )  -> 
( PLine Q )  =  { x  e.  ( EE `  N
)  |  x  Colinear  <. P ,  Q >. } )
10 necom 2679 . . . . 5  |-  ( P  =/=  Q  <->  Q  =/=  P )
11103anbi3i 1146 . . . 4  |-  ( ( P  e.  ( EE
`  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  <->  ( P  e.  ( EE `  N
)  /\  Q  e.  ( EE `  N )  /\  Q  =/=  P
) )
12 3ancoma 943 . . . 4  |-  ( ( P  e.  ( EE
`  N )  /\  Q  e.  ( EE `  N )  /\  Q  =/=  P )  <->  ( Q  e.  ( EE `  N
)  /\  P  e.  ( EE `  N )  /\  Q  =/=  P
) )
1311, 12bitri 241 . . 3  |-  ( ( P  e.  ( EE
`  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  <->  ( Q  e.  ( EE `  N
)  /\  P  e.  ( EE `  N )  /\  Q  =/=  P
) )
14 fvline2 26045 . . 3  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  Q  =/=  P ) )  -> 
( QLine P )  =  { x  e.  ( EE `  N
)  |  x  Colinear  <. Q ,  P >. } )
1513, 14sylan2b 462 . 2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q ) )  -> 
( QLine P )  =  { x  e.  ( EE `  N
)  |  x  Colinear  <. Q ,  P >. } )
168, 9, 153eqtr4d 2477 1  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q ) )  -> 
( PLine Q )  =  ( QLine P
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   {crab 2701   <.cop 3809   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   NNcn 9990   EEcee 25792    Colinear ccolin 25936  Linecline2 26033
This theorem is referenced by:  linerflx2  26050  linethru  26052
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7586  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057  ax-pre-sup 9058
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-ec 6899  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7469  df-card 7816  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-div 9668  df-nn 9991  df-2 10048  df-3 10049  df-n0 10212  df-z 10273  df-uz 10479  df-rp 10603  df-ico 10912  df-icc 10913  df-fz 11034  df-fzo 11126  df-seq 11314  df-exp 11373  df-hash 11609  df-cj 11894  df-re 11895  df-im 11896  df-sqr 12030  df-abs 12031  df-clim 12272  df-sum 12470  df-ee 25795  df-btwn 25796  df-cgr 25797  df-colinear 25940  df-line2 26036
  Copyright terms: Public domain W3C validator