Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linedegen Structured version   Unicode version

Theorem linedegen 26069
Description: When Line is applied with the same argument, the result is the empty set. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
linedegen  |-  ( ALine A )  =  (/)

Proof of Theorem linedegen
Dummy variables  l  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6076 . 2  |-  ( ALine A )  =  (Line `  <. A ,  A >. )
2 neirr 2603 . . . . . . . . . . 11  |-  -.  A  =/=  A
3 simp3 959 . . . . . . . . . . 11  |-  ( ( A  e.  ( EE
`  n )  /\  A  e.  ( EE `  n )  /\  A  =/=  A )  ->  A  =/=  A )
42, 3mto 169 . . . . . . . . . 10  |-  -.  ( A  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  A  =/=  A )
54intnanr 882 . . . . . . . . 9  |-  -.  (
( A  e.  ( EE `  n )  /\  A  e.  ( EE `  n )  /\  A  =/=  A
)  /\  l  =  [ <. A ,  A >. ] `'  Colinear  )
65a1i 11 . . . . . . . 8  |-  ( n  e.  NN  ->  -.  ( ( A  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  A  =/=  A
)  /\  l  =  [ <. A ,  A >. ] `'  Colinear  ) )
76nrex 2800 . . . . . . 7  |-  -.  E. n  e.  NN  (
( A  e.  ( EE `  n )  /\  A  e.  ( EE `  n )  /\  A  =/=  A
)  /\  l  =  [ <. A ,  A >. ] `'  Colinear  )
87nex 1564 . . . . . 6  |-  -.  E. l E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  A  =/=  A
)  /\  l  =  [ <. A ,  A >. ] `'  Colinear  )
9 eleq1 2495 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
x  e.  ( EE
`  n )  <->  A  e.  ( EE `  n ) ) )
10 neeq1 2606 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
x  =/=  y  <->  A  =/=  y ) )
119, 103anbi13d 1256 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
( x  e.  ( EE `  n )  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  <->  ( A  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  A  =/=  y
) ) )
12 opeq1 3976 . . . . . . . . . . . . 13  |-  ( x  =  A  ->  <. x ,  y >.  =  <. A ,  y >. )
13 eceq1 6933 . . . . . . . . . . . . 13  |-  ( <.
x ,  y >.  =  <. A ,  y
>.  ->  [ <. x ,  y >. ] `'  Colinear  =  [ <. A ,  y
>. ] `'  Colinear  )
1412, 13syl 16 . . . . . . . . . . . 12  |-  ( x  =  A  ->  [ <. x ,  y >. ] `'  Colinear  =  [ <. A ,  y
>. ] `'  Colinear  )
1514eqeq2d 2446 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
l  =  [ <. x ,  y >. ] `'  Colinear  <->  l  =  [ <. A ,  y
>. ] `'  Colinear  ) )
1611, 15anbi12d 692 . . . . . . . . . 10  |-  ( x  =  A  ->  (
( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  )  <->  ( ( A  e.  ( EE `  n )  /\  y  e.  ( EE `  n
)  /\  A  =/=  y )  /\  l  =  [ <. A ,  y
>. ] `'  Colinear  ) ) )
1716rexbidv 2718 . . . . . . . . 9  |-  ( x  =  A  ->  ( E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  )  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  y  e.  ( EE `  n
)  /\  A  =/=  y )  /\  l  =  [ <. A ,  y
>. ] `'  Colinear  ) ) )
1817exbidv 1636 . . . . . . . 8  |-  ( x  =  A  ->  ( E. l E. n  e.  NN  ( ( x  e.  ( EE `  n )  /\  y  e.  ( EE `  n
)  /\  x  =/=  y )  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  )  <->  E. l E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  A  =/=  y
)  /\  l  =  [ <. A ,  y
>. ] `'  Colinear  ) ) )
19 eleq1 2495 . . . . . . . . . . . 12  |-  ( y  =  A  ->  (
y  e.  ( EE
`  n )  <->  A  e.  ( EE `  n ) ) )
20 neeq2 2607 . . . . . . . . . . . 12  |-  ( y  =  A  ->  ( A  =/=  y  <->  A  =/=  A ) )
2119, 203anbi23d 1257 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( A  e.  ( EE `  n )  /\  y  e.  ( EE `  n )  /\  A  =/=  y
)  <->  ( A  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  A  =/=  A
) ) )
22 opeq2 3977 . . . . . . . . . . . . 13  |-  ( y  =  A  ->  <. A , 
y >.  =  <. A ,  A >. )
23 eceq1 6933 . . . . . . . . . . . . 13  |-  ( <. A ,  y >.  = 
<. A ,  A >.  ->  [ <. A ,  y
>. ] `'  Colinear  =  [ <. A ,  A >. ] `' 
Colinear  )
2422, 23syl 16 . . . . . . . . . . . 12  |-  ( y  =  A  ->  [ <. A ,  y >. ] `'  Colinear  =  [ <. A ,  A >. ] `'  Colinear  )
2524eqeq2d 2446 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
l  =  [ <. A ,  y >. ] `'  Colinear  <->  l  =  [ <. A ,  A >. ] `'  Colinear  ) )
2621, 25anbi12d 692 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( ( A  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  A  =/=  y
)  /\  l  =  [ <. A ,  y
>. ] `'  Colinear  )  <->  ( ( A  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  A  =/=  A )  /\  l  =  [ <. A ,  A >. ] `'  Colinear  ) ) )
2726rexbidv 2718 . . . . . . . . 9  |-  ( y  =  A  ->  ( E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  A  =/=  y
)  /\  l  =  [ <. A ,  y
>. ] `'  Colinear  )  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  A  =/=  A )  /\  l  =  [ <. A ,  A >. ] `'  Colinear  ) ) )
2827exbidv 1636 . . . . . . . 8  |-  ( y  =  A  ->  ( E. l E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  y  e.  ( EE `  n
)  /\  A  =/=  y )  /\  l  =  [ <. A ,  y
>. ] `'  Colinear  )  <->  E. l E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  A  =/=  A
)  /\  l  =  [ <. A ,  A >. ] `'  Colinear  ) ) )
2918, 28opelopabg 4465 . . . . . . 7  |-  ( ( A  e.  _V  /\  A  e.  _V )  ->  ( <. A ,  A >.  e.  { <. x ,  y >.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }  <->  E. l E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  A  =/=  A )  /\  l  =  [ <. A ,  A >. ] `'  Colinear  ) ) )
3029anidms 627 . . . . . 6  |-  ( A  e.  _V  ->  ( <. A ,  A >.  e. 
{ <. x ,  y
>.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }  <->  E. l E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  A  =/=  A )  /\  l  =  [ <. A ,  A >. ] `'  Colinear  ) ) )
318, 30mtbiri 295 . . . . 5  |-  ( A  e.  _V  ->  -.  <. A ,  A >.  e. 
{ <. x ,  y
>.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) } )
32 relopab 4993 . . . . . . . . 9  |-  Rel  { <. x ,  y >.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n )  /\  y  e.  ( EE `  n
)  /\  x  =/=  y )  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }
33 df-rel 4877 . . . . . . . . 9  |-  ( Rel 
{ <. x ,  y
>.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }  <->  { <. x ,  y
>.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) } 
C_  ( _V  X.  _V ) )
3432, 33mpbi 200 . . . . . . . 8  |-  { <. x ,  y >.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) } 
C_  ( _V  X.  _V )
3534sseli 3336 . . . . . . 7  |-  ( <. A ,  A >.  e. 
{ <. x ,  y
>.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }  ->  <. A ,  A >.  e.  ( _V  X.  _V ) )
36 opelxp1 4903 . . . . . . 7  |-  ( <. A ,  A >.  e.  ( _V  X.  _V )  ->  A  e.  _V )
3735, 36syl 16 . . . . . 6  |-  ( <. A ,  A >.  e. 
{ <. x ,  y
>.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }  ->  A  e.  _V )
3837con3i 129 . . . . 5  |-  ( -.  A  e.  _V  ->  -. 
<. A ,  A >.  e. 
{ <. x ,  y
>.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) } )
3931, 38pm2.61i 158 . . . 4  |-  -.  <. A ,  A >.  e.  { <. x ,  y >.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n )  /\  y  e.  ( EE `  n
)  /\  x  =/=  y )  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }
40 df-line2 26063 . . . . . . 7  |- Line  =  { <. <. x ,  y
>. ,  l >.  |  E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }
4140dmeqi 5063 . . . . . 6  |-  dom Line  =  dom  {
<. <. x ,  y
>. ,  l >.  |  E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }
42 dmoprab 6146 . . . . . 6  |-  dom  { <. <. x ,  y
>. ,  l >.  |  E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }  =  { <. x ,  y >.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }
4341, 42eqtri 2455 . . . . 5  |-  dom Line  =  { <. x ,  y >.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n )  /\  y  e.  ( EE `  n
)  /\  x  =/=  y )  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }
4443eleq2i 2499 . . . 4  |-  ( <. A ,  A >.  e. 
dom Line 
<-> 
<. A ,  A >.  e. 
{ <. x ,  y
>.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) } )
4539, 44mtbir 291 . . 3  |-  -.  <. A ,  A >.  e.  dom Line
46 ndmfv 5747 . . 3  |-  ( -. 
<. A ,  A >.  e. 
dom Line  ->  (Line `  <. A ,  A >. )  =  (/) )
4745, 46ax-mp 8 . 2  |-  (Line `  <. A ,  A >. )  =  (/)
481, 47eqtri 2455 1  |-  ( ALine A )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698   _Vcvv 2948    C_ wss 3312   (/)c0 3620   <.cop 3809   {copab 4257    X. cxp 4868   `'ccnv 4869   dom cdm 4870   Rel wrel 4875   ` cfv 5446  (class class class)co 6073   {coprab 6074   [cec 6895   NNcn 9992   EEcee 25819    Colinear ccolin 25963  Linecline2 26060
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-xp 4876  df-rel 4877  df-cnv 4878  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fv 5454  df-ov 6076  df-oprab 6077  df-ec 6899  df-line2 26063
  Copyright terms: Public domain W3C validator