Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lineext Unicode version

Theorem lineext 25724
Description: Extend a line with a missing point. Theorem 4.14 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 6-Oct-2013.)
Assertion
Ref Expression
lineext  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( ( A  Colinear  <. B ,  C >.  /\  <. A ,  B >.Cgr <. D ,  E >. )  ->  E. f  e.  ( EE `  N
) <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  f >. >. ) )
Distinct variable groups:    f, N    A, f    B, f    C, f    D, f    f, E

Proof of Theorem lineext
StepHypRef Expression
1 brcolinear 25707 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A  Colinear  <. B ,  C >. 
<->  ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) )
213adant3 977 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( A  Colinear  <. B ,  C >. 
<->  ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) )
32anbi1d 686 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( ( A  Colinear  <. B ,  C >.  /\  <. A ,  B >.Cgr <. D ,  E >. )  <->  ( ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. )  /\  <. A ,  B >.Cgr
<. D ,  E >. ) ) )
4 simp1 957 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  ->  N  e.  NN )
5 simp3r 986 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  ->  E  e.  ( EE `  N ) )
6 simp3l 985 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  ->  D  e.  ( EE `  N ) )
75, 6jca 519 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( E  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )
8 simp21 990 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
9 simp23 992 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  ->  C  e.  ( EE `  N ) )
108, 9jca 519 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )
114, 7, 103jca 1134 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( N  e.  NN  /\  ( E  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) ) )
1211adantr 452 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( A  Btwn  <. B ,  C >.  /\  <. A ,  B >.Cgr <. D ,  E >. ) )  ->  ( N  e.  NN  /\  ( E  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) ) )
13 axsegcon 25580 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( E  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  E. f  e.  ( EE `  N ) ( D  Btwn  <. E , 
f >.  /\  <. D , 
f >.Cgr <. A ,  C >. ) )
1412, 13syl 16 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( A  Btwn  <. B ,  C >.  /\  <. A ,  B >.Cgr <. D ,  E >. ) )  ->  E. f  e.  ( EE `  N
) ( D  Btwn  <. E ,  f >.  /\ 
<. D ,  f >.Cgr <. A ,  C >. ) )
15 simprlr 740 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  /\  ( ( A  Btwn  <. B ,  C >.  /\ 
<. A ,  B >.Cgr <. D ,  E >. )  /\  ( D  Btwn  <. E ,  f >.  /\ 
<. A ,  C >.Cgr <. D ,  f >. ) ) )  ->  <. A ,  B >.Cgr <. D ,  E >. )
16 simprrr 742 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  /\  ( ( A  Btwn  <. B ,  C >.  /\ 
<. A ,  B >.Cgr <. D ,  E >. )  /\  ( D  Btwn  <. E ,  f >.  /\ 
<. A ,  C >.Cgr <. D ,  f >. ) ) )  ->  <. A ,  C >.Cgr <. D ,  f
>. )
17 an4 798 . . . . . . . . . . . . 13  |-  ( ( ( A  Btwn  <. B ,  C >.  /\  <. A ,  B >.Cgr <. D ,  E >. )  /\  ( D 
Btwn  <. E ,  f
>.  /\  <. A ,  C >.Cgr
<. D ,  f >.
) )  <->  ( ( A  Btwn  <. B ,  C >.  /\  D  Btwn  <. E , 
f >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. A ,  C >.Cgr <. D ,  f >. ) ) )
18 simpl1 960 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  ->  N  e.  NN )
19 simpl21 1035 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  ->  A  e.  ( EE `  N ) )
20 simpl22 1036 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  ->  B  e.  ( EE `  N ) )
21 simpl3l 1012 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  ->  D  e.  ( EE `  N ) )
22 simpl3r 1013 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  ->  E  e.  ( EE `  N ) )
23 cgrcomlr 25646 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.Cgr <. D ,  E >.  <->  <. B ,  A >.Cgr <. E ,  D >. ) )
2418, 19, 20, 21, 22, 23syl122anc 1193 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  -> 
( <. A ,  B >.Cgr
<. D ,  E >.  <->  <. B ,  A >.Cgr <. E ,  D >. ) )
2524anbi1d 686 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  -> 
( ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. A ,  C >.Cgr
<. D ,  f >.
)  <->  ( <. B ,  A >.Cgr <. E ,  D >.  /\  <. A ,  C >.Cgr
<. D ,  f >.
) ) )
2625anbi2d 685 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  -> 
( ( ( A 
Btwn  <. B ,  C >.  /\  D  Btwn  <. E , 
f >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. A ,  C >.Cgr <. D ,  f >. ) )  <->  ( ( A 
Btwn  <. B ,  C >.  /\  D  Btwn  <. E , 
f >. )  /\  ( <. B ,  A >.Cgr <. E ,  D >.  /\ 
<. A ,  C >.Cgr <. D ,  f >. ) ) ) )
27 simpl23 1037 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  ->  C  e.  ( EE `  N ) )
28 simpr 448 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  -> 
f  e.  ( EE
`  N ) )
29 cgrextend 25656 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( B  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  f  e.  ( EE `  N ) ) )  ->  (
( ( A  Btwn  <. B ,  C >.  /\  D  Btwn  <. E , 
f >. )  /\  ( <. B ,  A >.Cgr <. E ,  D >.  /\ 
<. A ,  C >.Cgr <. D ,  f >. ) )  ->  <. B ,  C >.Cgr <. E ,  f
>. ) )
3018, 20, 19, 27, 22, 21, 28, 29syl133anc 1207 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  -> 
( ( ( A 
Btwn  <. B ,  C >.  /\  D  Btwn  <. E , 
f >. )  /\  ( <. B ,  A >.Cgr <. E ,  D >.  /\ 
<. A ,  C >.Cgr <. D ,  f >. ) )  ->  <. B ,  C >.Cgr <. E ,  f
>. ) )
3126, 30sylbid 207 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  -> 
( ( ( A 
Btwn  <. B ,  C >.  /\  D  Btwn  <. E , 
f >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. A ,  C >.Cgr <. D ,  f >. ) )  ->  <. B ,  C >.Cgr <. E ,  f
>. ) )
3217, 31syl5bi 209 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  -> 
( ( ( A 
Btwn  <. B ,  C >.  /\  <. A ,  B >.Cgr
<. D ,  E >. )  /\  ( D  Btwn  <. E ,  f >.  /\ 
<. A ,  C >.Cgr <. D ,  f >. ) )  ->  <. B ,  C >.Cgr <. E ,  f
>. ) )
3332imp 419 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  /\  ( ( A  Btwn  <. B ,  C >.  /\ 
<. A ,  B >.Cgr <. D ,  E >. )  /\  ( D  Btwn  <. E ,  f >.  /\ 
<. A ,  C >.Cgr <. D ,  f >. ) ) )  ->  <. B ,  C >.Cgr <. E ,  f
>. )
3415, 16, 333jca 1134 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  /\  ( ( A  Btwn  <. B ,  C >.  /\ 
<. A ,  B >.Cgr <. D ,  E >. )  /\  ( D  Btwn  <. E ,  f >.  /\ 
<. A ,  C >.Cgr <. D ,  f >. ) ) )  ->  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. A ,  C >.Cgr <. D ,  f >.  /\ 
<. B ,  C >.Cgr <. E ,  f >. ) )
3534expr 599 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  /\  ( A  Btwn  <. B ,  C >.  /\  <. A ,  B >.Cgr <. D ,  E >. ) )  ->  (
( D  Btwn  <. E , 
f >.  /\  <. A ,  C >.Cgr <. D ,  f
>. )  ->  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. A ,  C >.Cgr <. D ,  f >.  /\ 
<. B ,  C >.Cgr <. E ,  f >. ) ) )
36 cgrcom 25638 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( D  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) )  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  ( <. D , 
f >.Cgr <. A ,  C >.  <->  <. A ,  C >.Cgr <. D ,  f >. ) )
3718, 21, 28, 19, 27, 36syl122anc 1193 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  -> 
( <. D ,  f
>.Cgr <. A ,  C >.  <->  <. A ,  C >.Cgr <. D ,  f >. ) )
3837anbi2d 685 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  -> 
( ( D  Btwn  <. E ,  f >.  /\ 
<. D ,  f >.Cgr <. A ,  C >. )  <-> 
( D  Btwn  <. E , 
f >.  /\  <. A ,  C >.Cgr <. D ,  f
>. ) ) )
3938adantr 452 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  /\  ( A  Btwn  <. B ,  C >.  /\  <. A ,  B >.Cgr <. D ,  E >. ) )  ->  (
( D  Btwn  <. E , 
f >.  /\  <. D , 
f >.Cgr <. A ,  C >. )  <->  ( D  Btwn  <. E ,  f >.  /\ 
<. A ,  C >.Cgr <. D ,  f >. ) ) )
40 simpl2 961 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  -> 
( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )
41 brcgr3 25694 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  f  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  f >. >.  <->  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. A ,  C >.Cgr <. D ,  f
>.  /\  <. B ,  C >.Cgr
<. E ,  f >.
) ) )
4218, 40, 21, 22, 28, 41syl113anc 1196 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  -> 
( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  f >. >.  <-> 
( <. A ,  B >.Cgr
<. D ,  E >.  /\ 
<. A ,  C >.Cgr <. D ,  f >.  /\ 
<. B ,  C >.Cgr <. E ,  f >. ) ) )
4342adantr 452 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  /\  ( A  Btwn  <. B ,  C >.  /\  <. A ,  B >.Cgr <. D ,  E >. ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  f >. >.  <->  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. A ,  C >.Cgr <. D ,  f
>.  /\  <. B ,  C >.Cgr
<. E ,  f >.
) ) )
4435, 39, 433imtr4d 260 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  /\  ( A  Btwn  <. B ,  C >.  /\  <. A ,  B >.Cgr <. D ,  E >. ) )  ->  (
( D  Btwn  <. E , 
f >.  /\  <. D , 
f >.Cgr <. A ,  C >. )  ->  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E , 
f >. >. ) )
4544an32s 780 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( A  Btwn  <. B ,  C >.  /\  <. A ,  B >.Cgr <. D ,  E >. ) )  /\  f  e.  ( EE `  N
) )  ->  (
( D  Btwn  <. E , 
f >.  /\  <. D , 
f >.Cgr <. A ,  C >. )  ->  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E , 
f >. >. ) )
4645reximdva 2761 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( A  Btwn  <. B ,  C >.  /\  <. A ,  B >.Cgr <. D ,  E >. ) )  ->  ( E. f  e.  ( EE `  N ) ( D  Btwn  <. E , 
f >.  /\  <. D , 
f >.Cgr <. A ,  C >. )  ->  E. f  e.  ( EE `  N
) <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  f >. >. ) )
4714, 46mpd 15 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( A  Btwn  <. B ,  C >.  /\  <. A ,  B >.Cgr <. D ,  E >. ) )  ->  E. f  e.  ( EE `  N
) <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  f >. >. )
4847exp32 589 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. B ,  C >.  ->  ( <. A ,  B >.Cgr <. D ,  E >.  ->  E. f  e.  ( EE `  N
) <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  f >. >. ) ) )
49 3ancoma 943 . . . . . . 7  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  <->  ( B  e.  ( EE `  N
)  /\  A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )
50 btwncom 25662 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( B  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. A ,  C >. 
<->  B  Btwn  <. C ,  A >. ) )
5149, 50sylan2b 462 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. A ,  C >. 
<->  B  Btwn  <. C ,  A >. ) )
52513adant3 977 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. A ,  C >. 
<->  B  Btwn  <. C ,  A >. ) )
53 simp3 959 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N ) ) )
54 simp22 991 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
55 axsegcon 25580 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  E. f  e.  ( EE `  N ) ( E  Btwn  <. D , 
f >.  /\  <. E , 
f >.Cgr <. B ,  C >. ) )
564, 53, 54, 9, 55syl112anc 1188 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  ->  E. f  e.  ( EE `  N ) ( E  Btwn  <. D , 
f >.  /\  <. E , 
f >.Cgr <. B ,  C >. ) )
5756adantr 452 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  B >.Cgr <. D ,  E >. ) )  ->  E. f  e.  ( EE `  N
) ( E  Btwn  <. D ,  f >.  /\ 
<. E ,  f >.Cgr <. B ,  C >. ) )
58 cgrextend 25656 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  f  e.  ( EE `  N ) ) )  ->  (
( ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D , 
f >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  f >. ) )  ->  <. A ,  C >.Cgr <. D ,  f
>. ) )
5918, 40, 21, 22, 28, 58syl113anc 1196 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  -> 
( ( ( B 
Btwn  <. A ,  C >.  /\  E  Btwn  <. D , 
f >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  f >. ) )  ->  <. A ,  C >.Cgr <. D ,  f
>. ) )
60 simpll 731 . . . . . . . . . . . . . . 15  |-  ( ( ( <. A ,  B >.Cgr
<. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  f >. )  /\  <. A ,  C >.Cgr
<. D ,  f >.
)  ->  <. A ,  B >.Cgr <. D ,  E >. )
61 simpr 448 . . . . . . . . . . . . . . 15  |-  ( ( ( <. A ,  B >.Cgr
<. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  f >. )  /\  <. A ,  C >.Cgr
<. D ,  f >.
)  ->  <. A ,  C >.Cgr <. D ,  f
>. )
62 simplr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( <. A ,  B >.Cgr
<. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  f >. )  /\  <. A ,  C >.Cgr
<. D ,  f >.
)  ->  <. B ,  C >.Cgr <. E ,  f
>. )
6360, 61, 623jca 1134 . . . . . . . . . . . . . 14  |-  ( ( ( <. A ,  B >.Cgr
<. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  f >. )  /\  <. A ,  C >.Cgr
<. D ,  f >.
)  ->  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. A ,  C >.Cgr <. D ,  f
>.  /\  <. B ,  C >.Cgr
<. E ,  f >.
) )
6463ex 424 . . . . . . . . . . . . 13  |-  ( (
<. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  f >. )  ->  ( <. A ,  C >.Cgr <. D ,  f
>.  ->  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. A ,  C >.Cgr
<. D ,  f >.  /\  <. B ,  C >.Cgr
<. E ,  f >.
) ) )
6564adantl 453 . . . . . . . . . . . 12  |-  ( ( ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  f >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  f >.
) )  ->  ( <. A ,  C >.Cgr <. D ,  f >.  -> 
( <. A ,  B >.Cgr
<. D ,  E >.  /\ 
<. A ,  C >.Cgr <. D ,  f >.  /\ 
<. B ,  C >.Cgr <. E ,  f >. ) ) )
6659, 65sylcom 27 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  -> 
( ( ( B 
Btwn  <. A ,  C >.  /\  E  Btwn  <. D , 
f >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  f >. ) )  ->  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. A ,  C >.Cgr <. D ,  f
>.  /\  <. B ,  C >.Cgr
<. E ,  f >.
) ) )
67 an4 798 . . . . . . . . . . . 12  |-  ( ( ( B  Btwn  <. A ,  C >.  /\  <. A ,  B >.Cgr <. D ,  E >. )  /\  ( E 
Btwn  <. D ,  f
>.  /\  <. E ,  f
>.Cgr <. B ,  C >. ) )  <->  ( ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D , 
f >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. E ,  f >.Cgr <. B ,  C >. ) ) )
68 cgrcom 25638 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( E  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  ( <. E , 
f >.Cgr <. B ,  C >.  <->  <. B ,  C >.Cgr <. E ,  f >. ) )
6918, 22, 28, 20, 27, 68syl122anc 1193 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  -> 
( <. E ,  f
>.Cgr <. B ,  C >.  <->  <. B ,  C >.Cgr <. E ,  f >. ) )
7069anbi2d 685 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  -> 
( ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. E ,  f
>.Cgr <. B ,  C >. )  <->  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  f >.
) ) )
7170anbi2d 685 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  -> 
( ( ( B 
Btwn  <. A ,  C >.  /\  E  Btwn  <. D , 
f >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. E ,  f >.Cgr <. B ,  C >. ) )  <->  ( ( B 
Btwn  <. A ,  C >.  /\  E  Btwn  <. D , 
f >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  f >. ) ) ) )
7267, 71syl5bb 249 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  -> 
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  B >.Cgr
<. D ,  E >. )  /\  ( E  Btwn  <. D ,  f >.  /\ 
<. E ,  f >.Cgr <. B ,  C >. ) )  <->  ( ( B 
Btwn  <. A ,  C >.  /\  E  Btwn  <. D , 
f >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  f >. ) ) ) )
7366, 72, 423imtr4d 260 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  -> 
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  B >.Cgr
<. D ,  E >. )  /\  ( E  Btwn  <. D ,  f >.  /\ 
<. E ,  f >.Cgr <. B ,  C >. ) )  ->  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E , 
f >. >. ) )
7473expdimp 427 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  B >.Cgr <. D ,  E >. ) )  ->  (
( E  Btwn  <. D , 
f >.  /\  <. E , 
f >.Cgr <. B ,  C >. )  ->  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E , 
f >. >. ) )
7574an32s 780 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  B >.Cgr <. D ,  E >. ) )  /\  f  e.  ( EE `  N
) )  ->  (
( E  Btwn  <. D , 
f >.  /\  <. E , 
f >.Cgr <. B ,  C >. )  ->  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E , 
f >. >. ) )
7675reximdva 2761 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  B >.Cgr <. D ,  E >. ) )  ->  ( E. f  e.  ( EE `  N ) ( E  Btwn  <. D , 
f >.  /\  <. E , 
f >.Cgr <. B ,  C >. )  ->  E. f  e.  ( EE `  N
) <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  f >. >. ) )
7757, 76mpd 15 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  B >.Cgr <. D ,  E >. ) )  ->  E. f  e.  ( EE `  N
) <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  f >. >. )
7877exp32 589 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. A ,  C >.  ->  ( <. A ,  B >.Cgr <. D ,  E >.  ->  E. f  e.  ( EE `  N
) <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  f >. >. ) ) )
7952, 78sylbird 227 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. C ,  A >.  ->  ( <. A ,  B >.Cgr <. D ,  E >.  ->  E. f  e.  ( EE `  N
) <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  f >. >. ) ) )
80 cgrxfr 25703 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( ( C  Btwn  <. A ,  B >.  /\ 
<. A ,  B >.Cgr <. D ,  E >. )  ->  E. f  e.  ( EE `  N ) ( f  Btwn  <. D ,  E >.  /\  <. A ,  <. C ,  B >. >.Cgr3 <. D ,  <. f ,  E >. >. ) ) )
814, 8, 9, 54, 53, 80syl131anc 1197 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( ( C  Btwn  <. A ,  B >.  /\ 
<. A ,  B >.Cgr <. D ,  E >. )  ->  E. f  e.  ( EE `  N ) ( f  Btwn  <. D ,  E >.  /\  <. A ,  <. C ,  B >. >.Cgr3 <. D ,  <. f ,  E >. >. ) ) )
82 cgr3permute1 25696 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  f  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  f >. >.  <->  <. A ,  <. C ,  B >. >.Cgr3 <. D ,  <. f ,  E >. >. ) )
8318, 40, 21, 22, 28, 82syl113anc 1196 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  -> 
( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  f >. >.  <->  <. A ,  <. C ,  B >. >.Cgr3 <. D ,  <. f ,  E >. >. )
)
8483biimprd 215 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  -> 
( <. A ,  <. C ,  B >. >.Cgr3 <. D ,  <. f ,  E >. >.  -> 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  f >. >. )
)
8584adantld 454 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  f  e.  ( EE `  N ) )  -> 
( ( f  Btwn  <. D ,  E >.  /\ 
<. A ,  <. C ,  B >. >.Cgr3 <. D ,  <. f ,  E >. >. )  -> 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  f >. >. )
)
8685reximdva 2761 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( E. f  e.  ( EE `  N
) ( f  Btwn  <. D ,  E >.  /\ 
<. A ,  <. C ,  B >. >.Cgr3 <. D ,  <. f ,  E >. >. )  ->  E. f  e.  ( EE `  N )
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  f >. >. )
)
8781, 86syld 42 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( ( C  Btwn  <. A ,  B >.  /\ 
<. A ,  B >.Cgr <. D ,  E >. )  ->  E. f  e.  ( EE `  N )
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  f >. >. )
)
8887exp3a 426 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( C  Btwn  <. A ,  B >.  ->  ( <. A ,  B >.Cgr <. D ,  E >.  ->  E. f  e.  ( EE `  N
) <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  f >. >. ) ) )
8948, 79, 883jaod 1248 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. )  ->  ( <. A ,  B >.Cgr <. D ,  E >.  ->  E. f  e.  ( EE `  N )
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  f >. >. )
) )
9089imp3a 421 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( ( ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. )  /\  <. A ,  B >.Cgr
<. D ,  E >. )  ->  E. f  e.  ( EE `  N )
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  f >. >. )
)
913, 90sylbid 207 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( ( A  Colinear  <. B ,  C >.  /\  <. A ,  B >.Cgr <. D ,  E >. )  ->  E. f  e.  ( EE `  N
) <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  f >. >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    \/ w3o 935    /\ w3a 936    e. wcel 1717   E.wrex 2650   <.cop 3760   class class class wbr 4153   ` cfv 5394   NNcn 9932   EEcee 25541    Btwn cbtwn 25542  Cgrccgr 25543  Cgr3ccgr3 25684    Colinear ccolin 25685
This theorem is referenced by:  brsegle2  25757
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-map 6956  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-sup 7381  df-oi 7412  df-card 7759  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-n0 10154  df-z 10215  df-uz 10421  df-rp 10545  df-ico 10854  df-icc 10855  df-fz 10976  df-fzo 11066  df-seq 11251  df-exp 11310  df-hash 11546  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-clim 12209  df-sum 12407  df-ee 25544  df-btwn 25545  df-cgr 25546  df-ofs 25631  df-cgr3 25688  df-colinear 25689
  Copyright terms: Public domain W3C validator