Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linethru Unicode version

Theorem linethru 24116
Description: If  A is a line containing two distinct points  P and  Q, then  A is the line through  P and  Q. Theorem 6.18 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
linethru  |-  ( ( A  e. LinesEE  /\  ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  A  =  ( PLine Q ) )

Proof of Theorem linethru
StepHypRef Expression
1 ellines 24115 . . 3  |-  ( A  e. LinesEE 
<->  E. n  e.  NN  E. a  e.  ( EE
`  n ) E. b  e.  ( EE
`  n ) ( a  =/=  b  /\  A  =  ( aLine b ) ) )
2 simpll1 999 . . . . . . . . . . . 12  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  n  e.  NN )
3 simpll2 1000 . . . . . . . . . . . 12  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  a  e.  ( EE `  n ) )
4 simpll3 1001 . . . . . . . . . . . 12  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  b  e.  ( EE `  n ) )
5 simplr 734 . . . . . . . . . . . 12  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  a  =/=  b
)
6 liness 24108 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b
) )  ->  (
aLine b )  C_  ( EE `  n ) )
72, 3, 4, 5, 6syl13anc 1189 . . . . . . . . . . 11  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  ( aLine b )  C_  ( EE `  n ) )
8 simprll 741 . . . . . . . . . . 11  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  P  e.  ( aLine b ) )
97, 8sseldd 3123 . . . . . . . . . 10  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  P  e.  ( EE `  n ) )
10 simprlr 742 . . . . . . . . . . 11  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  Q  e.  ( aLine b ) )
117, 10sseldd 3123 . . . . . . . . . 10  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  Q  e.  ( EE `  n ) )
12 simplll 737 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  ->  P  e.  ( aLine b ) )
1312adantl 454 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  ->  P  e.  ( aLine b ) )
14 simpll1 999 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  ->  n  e.  NN )
15 simpll2 1000 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
a  e.  ( EE
`  n ) )
16 simpll3 1001 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
b  e.  ( EE
`  n ) )
17 simplr 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
a  =/=  b )
18 simprrl 743 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  ->  P  e.  ( EE `  n ) )
19 simprlr 742 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  ->  P  =/=  a )
2019necomd 2502 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
a  =/=  P )
21 lineelsb2 24111 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  ( P  e.  ( EE `  n
)  /\  a  =/=  P ) )  ->  ( P  e.  ( aLine b )  ->  (
aLine b )  =  ( aLine P ) ) )
2214, 15, 16, 17, 18, 20, 21syl132anc 1205 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( P  e.  ( aLine b )  -> 
( aLine b )  =  ( aLine P
) ) )
2313, 22mpd 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( aLine P
) )
24 linecom 24113 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  P  e.  ( EE `  n )  /\  a  =/=  P
) )  ->  (
aLine P )  =  ( PLine a ) )
2514, 15, 18, 20, 24syl13anc 1189 . . . . . . . . . . . . . 14  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine P )  =  ( PLine a
) )
2623, 25eqtrd 2288 . . . . . . . . . . . . 13  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine a
) )
27 neeq2 2428 . . . . . . . . . . . . . . . . 17  |-  ( Q  =  a  ->  ( P  =/=  Q  <->  P  =/=  a ) )
2827anbi2d 687 . . . . . . . . . . . . . . . 16  |-  ( Q  =  a  ->  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  <->  ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a ) ) )
2928anbi1d 688 . . . . . . . . . . . . . . 15  |-  ( Q  =  a  ->  (
( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/= 
Q )  /\  ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n
) ) )  <->  ( (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a )  /\  ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n ) ) ) ) )
3029anbi2d 687 . . . . . . . . . . . . . 14  |-  ( Q  =  a  ->  (
( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  <->  ( (
( n  e.  NN  /\  a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  ( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a )  /\  ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n
) ) ) ) ) )
31 oveq2 5765 . . . . . . . . . . . . . . 15  |-  ( Q  =  a  ->  ( PLine Q )  =  ( PLine a ) )
3231eqeq2d 2267 . . . . . . . . . . . . . 14  |-  ( Q  =  a  ->  (
( aLine b )  =  ( PLine Q
)  <->  ( aLine b )  =  ( PLine a ) ) )
3330, 32imbi12d 313 . . . . . . . . . . . . 13  |-  ( Q  =  a  ->  (
( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine Q
) )  <->  ( (
( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine a
) ) ) )
3426, 33mpbiri 226 . . . . . . . . . . . 12  |-  ( Q  =  a  ->  (
( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine Q
) ) )
35 simp1 960 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
( n  e.  NN  /\  a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b ) )
36 simp2l 986 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )
3735, 36, 10syl2anc 645 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  Q  e.  ( aLine b ) )
38 simp1l1 1053 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  n  e.  NN )
39 simp1l2 1054 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  a  e.  ( EE `  n
) )
40 simp1l3 1055 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  b  e.  ( EE `  n
) )
41 simp1r 985 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  a  =/=  b )
42 simp2rr 1030 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  Q  e.  ( EE `  n
) )
43 simp3 962 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  Q  =/=  a )
4443necomd 2502 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  a  =/=  Q )
45 lineelsb2 24111 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  ( Q  e.  ( EE `  n
)  /\  a  =/=  Q ) )  ->  ( Q  e.  ( aLine b )  ->  (
aLine b )  =  ( aLine Q ) ) )
4638, 39, 40, 41, 42, 44, 45syl132anc 1205 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  ( Q  e.  ( aLine b )  ->  (
aLine b )  =  ( aLine Q ) ) )
4737, 46mpd 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
aLine b )  =  ( aLine Q ) )
48 linecom 24113 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  Q  e.  ( EE `  n )  /\  a  =/=  Q
) )  ->  (
aLine Q )  =  ( QLine a ) )
4938, 39, 42, 44, 48syl13anc 1189 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
aLine Q )  =  ( QLine a ) )
5047, 49eqtrd 2288 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
aLine b )  =  ( QLine a ) )
51 simpll 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q )  ->  P  e.  ( aLine b ) )
5236, 51syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  P  e.  ( aLine b ) )
5352, 50eleqtrd 2332 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  P  e.  ( QLine a ) )
54 simp2rl 1029 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  P  e.  ( EE `  n
) )
55 simp2lr 1028 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  P  =/=  Q )
5655necomd 2502 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  Q  =/=  P )
57 lineelsb2 24111 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  ( Q  e.  ( EE `  n )  /\  a  e.  ( EE `  n )  /\  Q  =/=  a )  /\  ( P  e.  ( EE `  n )  /\  Q  =/=  P ) )  -> 
( P  e.  ( QLine a )  -> 
( QLine a )  =  ( QLine P
) ) )
5838, 42, 39, 43, 54, 56, 57syl132anc 1205 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  ( P  e.  ( QLine a )  ->  ( QLine a )  =  ( QLine P ) ) )
5953, 58mpd 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  ( QLine a )  =  ( QLine P ) )
60 linecom 24113 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  /\  ( Q  e.  ( EE `  n )  /\  P  e.  ( EE `  n )  /\  Q  =/=  P ) )  -> 
( QLine P )  =  ( PLine Q
) )
6138, 42, 54, 56, 60syl13anc 1189 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  ( QLine P )  =  ( PLine Q ) )
6250, 59, 613eqtrd 2292 . . . . . . . . . . . . . 14  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
aLine b )  =  ( PLine Q ) )
63623expa 1156 . . . . . . . . . . . . 13  |-  ( ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  /\  Q  =/=  a )  -> 
( aLine b )  =  ( PLine Q
) )
6463expcom 426 . . . . . . . . . . . 12  |-  ( Q  =/=  a  ->  (
( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine Q
) ) )
6534, 64pm2.61ine 2495 . . . . . . . . . . 11  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine Q
) )
6665expr 601 . . . . . . . . . 10  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  ( ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n
) )  ->  (
aLine b )  =  ( PLine Q ) ) )
679, 11, 66mp2and 663 . . . . . . . . 9  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  ( aLine b )  =  ( PLine Q ) )
6867ex 425 . . . . . . . 8  |-  ( ( ( n  e.  NN  /\  a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  -> 
( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/= 
Q )  ->  (
aLine b )  =  ( PLine Q ) ) )
69 eleq2 2317 . . . . . . . . . . 11  |-  ( A  =  ( aLine b )  ->  ( P  e.  A  <->  P  e.  (
aLine b ) ) )
70 eleq2 2317 . . . . . . . . . . 11  |-  ( A  =  ( aLine b )  ->  ( Q  e.  A  <->  Q  e.  (
aLine b ) ) )
7169, 70anbi12d 694 . . . . . . . . . 10  |-  ( A  =  ( aLine b )  ->  ( ( P  e.  A  /\  Q  e.  A )  <->  ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) ) ) )
7271anbi1d 688 . . . . . . . . 9  |-  ( A  =  ( aLine b )  ->  ( (
( P  e.  A  /\  Q  e.  A
)  /\  P  =/=  Q )  <->  ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/= 
Q ) ) )
73 eqeq1 2262 . . . . . . . . 9  |-  ( A  =  ( aLine b )  ->  ( A  =  ( PLine Q
)  <->  ( aLine b )  =  ( PLine Q ) ) )
7472, 73imbi12d 313 . . . . . . . 8  |-  ( A  =  ( aLine b )  ->  ( (
( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q )  ->  A  =  ( PLine Q
) )  <->  ( (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q )  -> 
( aLine b )  =  ( PLine Q
) ) ) )
7568, 74syl5ibrcom 215 . . . . . . 7  |-  ( ( ( n  e.  NN  /\  a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  -> 
( A  =  ( aLine b )  -> 
( ( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q )  ->  A  =  ( PLine Q
) ) ) )
7675expimpd 589 . . . . . 6  |-  ( ( n  e.  NN  /\  a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
) )  ->  (
( a  =/=  b  /\  A  =  (
aLine b ) )  ->  ( ( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  A  =  ( PLine Q ) ) ) )
77763expa 1156 . . . . 5  |-  ( ( ( n  e.  NN  /\  a  e.  ( EE
`  n ) )  /\  b  e.  ( EE `  n ) )  ->  ( (
a  =/=  b  /\  A  =  ( aLine b ) )  -> 
( ( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q )  ->  A  =  ( PLine Q
) ) ) )
7877rexlimdva 2638 . . . 4  |-  ( ( n  e.  NN  /\  a  e.  ( EE `  n ) )  -> 
( E. b  e.  ( EE `  n
) ( a  =/=  b  /\  A  =  ( aLine b ) )  ->  ( (
( P  e.  A  /\  Q  e.  A
)  /\  P  =/=  Q )  ->  A  =  ( PLine Q ) ) ) )
7978rexlimivv 2643 . . 3  |-  ( E. n  e.  NN  E. a  e.  ( EE `  n ) E. b  e.  ( EE `  n
) ( a  =/=  b  /\  A  =  ( aLine b ) )  ->  ( (
( P  e.  A  /\  Q  e.  A
)  /\  P  =/=  Q )  ->  A  =  ( PLine Q ) ) )
801, 79sylbi 189 . 2  |-  ( A  e. LinesEE  ->  ( ( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  A  =  ( PLine Q ) ) )
81803impib 1154 1  |-  ( ( A  e. LinesEE  /\  ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  A  =  ( PLine Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   E.wrex 2517    C_ wss 3094   ` cfv 4638  (class class class)co 5757   NNcn 9679   EEcee 23856  Linecline2 24097  LinesEEclines2 24099
This theorem is referenced by:  hilbert1.2  24118  lineintmo  24120
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-oadd 6416  df-er 6593  df-ec 6595  df-map 6707  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-sup 7127  df-oi 7158  df-card 7505  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-n0 9898  df-z 9957  df-uz 10163  df-rp 10287  df-ico 10593  df-icc 10594  df-fz 10714  df-fzo 10802  df-seq 10978  df-exp 11036  df-hash 11269  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-clim 11892  df-sum 12089  df-ee 23859  df-btwn 23860  df-cgr 23861  df-ofs 23946  df-ifs 24002  df-cgr3 24003  df-colinear 24004  df-fs 24005  df-line2 24100  df-lines2 24102
  Copyright terms: Public domain W3C validator