Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lineunray Unicode version

Theorem lineunray 23944
Description: A line is composed of a point and the two rays emerging from it. Theorem 6.15 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 26-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
lineunray  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  -> 
( P  Btwn  <. Q ,  R >.  ->  ( PLine Q )  =  ( ( ( PRay Q
)  u.  { P } )  u.  ( PRay R ) ) ) )

Proof of Theorem lineunray
StepHypRef Expression
1 simpl1 963 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  ->  N  e.  NN )
2 simpr 449 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  ->  x  e.  ( EE `  N ) )
3 simpl21 1038 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  ->  P  e.  ( EE `  N ) )
4 simpl22 1039 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  ->  Q  e.  ( EE `  N ) )
5 brcolinear 23856 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( x  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  -> 
( x  Colinear  <. P ,  Q >. 
<->  ( x  Btwn  <. P ,  Q >.  \/  P  Btwn  <. Q ,  x >.  \/  Q  Btwn  <. x ,  P >. ) ) )
61, 2, 3, 4, 5syl13anc 1189 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( x  Colinear  <. P ,  Q >. 
<->  ( x  Btwn  <. P ,  Q >.  \/  P  Btwn  <. Q ,  x >.  \/  Q  Btwn  <. x ,  P >. ) ) )
76adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( x  Colinear  <. P ,  Q >.  <->  (
x  Btwn  <. P ,  Q >.  \/  P  Btwn  <. Q ,  x >.  \/  Q  Btwn  <. x ,  P >. ) ) )
8 olc 375 . . . . . . . . . . . . . 14  |-  ( x 
Btwn  <. P ,  Q >.  ->  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )
98orcd 383 . . . . . . . . . . . . 13  |-  ( x 
Btwn  <. P ,  Q >.  ->  ( ( Q 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )
109a1i 12 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( x  Btwn  <. P ,  Q >.  ->  ( ( Q 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
11 simpl3l 1015 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  ->  P  =/=  Q )
1211necomd 2495 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  ->  Q  =/=  P )
1312adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  Q  =/=  P )
14 simprl 735 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  P  Btwn  <. Q ,  R >. )
15 simprr 736 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  P  Btwn  <. Q ,  x >. )
1613, 14, 153jca 1137 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  ( Q  =/=  P  /\  P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. ) )
17 simpl23 1040 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  ->  R  e.  ( EE `  N ) )
18 btwnconn2 23899 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) )  /\  ( R  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( ( Q  =/=  P  /\  P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. )  ->  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )
191, 4, 3, 17, 2, 18syl122anc 1196 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( Q  =/= 
P  /\  P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. )  ->  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )
2019adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  ( ( Q  =/=  P  /\  P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. )  ->  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )
2116, 20mpd 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) )
2221olcd 384 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )
2322expr 601 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( P  Btwn  <. Q ,  x >.  ->  ( ( Q 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
24 btwncom 23811 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  x  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  -> 
( Q  Btwn  <. x ,  P >.  <->  Q  Btwn  <. P ,  x >. ) )
251, 4, 2, 3, 24syl13anc 1189 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( Q  Btwn  <. x ,  P >.  <->  Q  Btwn  <. P ,  x >. ) )
26 orc 376 . . . . . . . . . . . . . . 15  |-  ( Q 
Btwn  <. P ,  x >.  ->  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )
2726orcd 383 . . . . . . . . . . . . . 14  |-  ( Q 
Btwn  <. P ,  x >.  ->  ( ( Q 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )
2825, 27syl6bi 221 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( Q  Btwn  <. x ,  P >.  ->  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
2928adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( Q  Btwn  <. x ,  P >.  ->  ( ( Q 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
3010, 23, 293jaod 1251 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( (
x  Btwn  <. P ,  Q >.  \/  P  Btwn  <. Q ,  x >.  \/  Q  Btwn  <. x ,  P >. )  ->  (
( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
317, 30sylbid 208 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( x  Colinear  <. P ,  Q >.  -> 
( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
32 olc 375 . . . . . . . . . 10  |-  ( ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) )  -> 
( x  =  P  \/  ( ( Q 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
3331, 32syl6 31 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( x  Colinear  <. P ,  Q >.  -> 
( x  =  P  \/  ( ( Q 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) ) )
34 colineartriv1 23864 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) )  ->  P  Colinear  <. P ,  Q >. )
351, 3, 4, 34syl3anc 1187 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  ->  P  Colinear  <. P ,  Q >. )
36 breq1 3923 . . . . . . . . . . . 12  |-  ( x  =  P  ->  (
x  Colinear  <. P ,  Q >.  <-> 
P  Colinear  <. P ,  Q >. ) )
3735, 36syl5ibrcom 215 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( x  =  P  ->  x  Colinear  <. P ,  Q >. ) )
3837adantr 453 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( x  =  P  ->  x  Colinear  <. P ,  Q >. )
)
39 btwncolinear3 23868 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  x  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  -> 
( Q  Btwn  <. P ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
401, 3, 2, 4, 39syl13anc 1189 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( Q  Btwn  <. P ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
41 btwncolinear5 23870 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  x  e.  ( EE `  N
) ) )  -> 
( x  Btwn  <. P ,  Q >.  ->  x  Colinear  <. P ,  Q >. ) )
421, 3, 4, 2, 41syl13anc 1189 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( x  Btwn  <. P ,  Q >.  ->  x  Colinear  <. P ,  Q >. ) )
4340, 42jaod 371 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  ->  x  Colinear  <. P ,  Q >. ) )
4443adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  ->  x  Colinear  <. P ,  Q >. ) )
45 simpl3r 1016 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  ->  P  =/=  R )
4645adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. ) )  ->  P  =/=  R )
47 simprl 735 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. ) )  ->  P  Btwn  <. Q ,  R >. )
48 simprr 736 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. ) )  ->  R  Btwn  <. P ,  x >. )
4946, 47, 483jca 1137 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. ) )  ->  ( P  =/=  R  /\  P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. ) )
50 btwnouttr 23821 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) )  /\  ( R  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( ( P  =/=  R  /\  P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. )  ->  P  Btwn  <. Q ,  x >. ) )
511, 4, 3, 17, 2, 50syl122anc 1196 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( P  =/= 
R  /\  P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. )  ->  P  Btwn  <. Q ,  x >. ) )
5251adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. ) )  ->  ( ( P  =/=  R  /\  P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. )  ->  P  Btwn  <. Q ,  x >. ) )
5349, 52mpd 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. ) )  ->  P  Btwn  <. Q ,  x >. )
54 btwncolinear4 23869 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  x  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  -> 
( P  Btwn  <. Q ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
551, 4, 2, 3, 54syl13anc 1189 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( P  Btwn  <. Q ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
5655adantr 453 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. ) )  ->  ( P  Btwn  <. Q ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
5753, 56mpd 16 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  R  Btwn  <. P ,  x >. ) )  ->  x  Colinear  <. P ,  Q >. )
5857expr 601 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( R  Btwn  <. P ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
59 simprr 736 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  x  Btwn  <. P ,  R >. ) )  ->  x  Btwn  <. P ,  R >. )
601, 2, 3, 17, 59btwncomand 23812 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  x  Btwn  <. P ,  R >. ) )  ->  x  Btwn  <. R ,  P >. )
61 simprl 735 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  x  Btwn  <. P ,  R >. ) )  ->  P  Btwn  <. Q ,  R >. )
621, 3, 4, 17, 61btwncomand 23812 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  x  Btwn  <. P ,  R >. ) )  ->  P  Btwn  <. R ,  Q >. )
631, 17, 2, 3, 4, 60, 62btwnexch3and 23818 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  x  Btwn  <. P ,  R >. ) )  ->  P  Btwn  <.
x ,  Q >. )
64 btwncolinear2 23867 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( x  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  -> 
( P  Btwn  <. x ,  Q >.  ->  x  Colinear  <. P ,  Q >. )
)
651, 2, 4, 3, 64syl13anc 1189 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( P  Btwn  <. x ,  Q >.  ->  x  Colinear  <. P ,  Q >. )
)
6665adantr 453 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  x  Btwn  <. P ,  R >. ) )  ->  ( P  Btwn  <. x ,  Q >.  ->  x  Colinear  <. P ,  Q >. ) )
6763, 66mpd 16 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  R >.  /\  x  Btwn  <. P ,  R >. ) )  ->  x  Colinear  <. P ,  Q >. )
6867expr 601 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( x  Btwn  <. P ,  R >.  ->  x  Colinear  <. P ,  Q >. ) )
6958, 68jaod 371 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. )  ->  x  Colinear  <. P ,  Q >. ) )
7044, 69jaod 371 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( (
( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) )  ->  x  Colinear  <. P ,  Q >. ) )
7138, 70jaod 371 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( (
x  =  P  \/  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )  ->  x  Colinear  <. P ,  Q >. ) )
7233, 71impbid 185 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( x  Colinear  <. P ,  Q >.  <->  (
x  =  P  \/  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) ) )
73 pm5.63 895 . . . . . . . . 9  |-  ( ( x  =  P  \/  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )  <-> 
( x  =  P  \/  ( -.  x  =  P  /\  (
( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) ) )
74 df-ne 2414 . . . . . . . . . . . 12  |-  ( x  =/=  P  <->  -.  x  =  P )
7574anbi1i 679 . . . . . . . . . . 11  |-  ( ( x  =/=  P  /\  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )  <-> 
( -.  x  =  P  /\  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
76 andi 842 . . . . . . . . . . 11  |-  ( ( x  =/=  P  /\  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )  <-> 
( ( x  =/= 
P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  \/  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
7775, 76bitr3i 244 . . . . . . . . . 10  |-  ( ( -.  x  =  P  /\  ( ( Q 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )  <-> 
( ( x  =/= 
P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  \/  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
7877orbi2i 507 . . . . . . . . 9  |-  ( ( x  =  P  \/  ( -.  x  =  P  /\  ( ( Q 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )  <->  ( x  =  P  \/  ( ( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  \/  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) ) )
7973, 78bitri 242 . . . . . . . 8  |-  ( ( x  =  P  \/  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  \/  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )  <-> 
( x  =  P  \/  ( ( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  \/  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) ) )
8072, 79syl6bb 254 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( x  Colinear  <. P ,  Q >.  <->  (
x  =  P  \/  ( ( x  =/= 
P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  \/  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) ) ) )
81 broutsideof2 23919 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  x  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. Q ,  x >.  <-> 
( Q  =/=  P  /\  x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) ) )
821, 3, 4, 2, 81syl13anc 1189 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( POutsideOf <. Q ,  x >.  <-> 
( Q  =/=  P  /\  x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) ) )
83 3simpc 959 . . . . . . . . . . . 12  |-  ( ( Q  =/=  P  /\  x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  -> 
( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) )
84 simpl3l 1015 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  ( x  e.  ( EE `  N )  /\  ( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) ) )  ->  P  =/=  Q )
8584necomd 2495 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  ( x  e.  ( EE `  N )  /\  ( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) ) )  ->  Q  =/=  P )
86 simprrl 743 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  ( x  e.  ( EE `  N )  /\  ( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) ) )  ->  x  =/=  P )
87 simprrr 744 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  ( x  e.  ( EE `  N )  /\  ( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) ) )  -> 
( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )
8885, 86, 873jca 1137 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  ( x  e.  ( EE `  N )  /\  ( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) ) )  -> 
( Q  =/=  P  /\  x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) )
8988expr 601 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( x  =/= 
P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  -> 
( Q  =/=  P  /\  x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) ) )
9083, 89impbid2 197 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( Q  =/= 
P  /\  x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  <->  ( x  =/=  P  /\  ( Q 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) ) )
9182, 90bitrd 246 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( POutsideOf <. Q ,  x >.  <-> 
( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) ) )
92 broutsideof2 23919 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  x  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. R ,  x >.  <-> 
( R  =/=  P  /\  x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
931, 3, 17, 2, 92syl13anc 1189 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( POutsideOf <. R ,  x >.  <-> 
( R  =/=  P  /\  x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
94 3simpc 959 . . . . . . . . . . . 12  |-  ( ( R  =/=  P  /\  x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) )  -> 
( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )
95 simpl3r 1016 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  ( x  e.  ( EE `  N )  /\  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )  ->  P  =/=  R )
9695necomd 2495 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  ( x  e.  ( EE `  N )  /\  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )  ->  R  =/=  P )
97 simprrl 743 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  ( x  e.  ( EE `  N )  /\  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )  ->  x  =/=  P )
98 simprrr 744 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  ( x  e.  ( EE `  N )  /\  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )  -> 
( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) )
9996, 97, 983jca 1137 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  ( x  e.  ( EE `  N )  /\  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )  -> 
( R  =/=  P  /\  x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) )
10099expr 601 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( x  =/= 
P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) )  -> 
( R  =/=  P  /\  x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
10194, 100impbid2 197 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( R  =/= 
P  /\  x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) )  <->  ( x  =/=  P  /\  ( R 
Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
10293, 101bitrd 246 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( POutsideOf <. R ,  x >.  <-> 
( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) )
10391, 102orbi12d 693 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( POutsideOf <. Q ,  x >.  \/  POutsideOf <. R ,  x >. )  <->  ( (
x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  \/  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) ) )
104103adantr 453 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( ( POutsideOf
<. Q ,  x >.  \/  POutsideOf <. R ,  x >. )  <->  ( ( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  \/  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) ) )
105104orbi2d 685 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( (
x  =  P  \/  ( POutsideOf <. Q ,  x >.  \/  POutsideOf <. R ,  x >. ) )  <->  ( x  =  P  \/  (
( x  =/=  P  /\  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )  \/  ( x  =/=  P  /\  ( R  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  R >. ) ) ) ) ) )
10680, 105bitr4d 249 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( x  Colinear  <. P ,  Q >.  <->  (
x  =  P  \/  ( POutsideOf <. Q ,  x >.  \/  POutsideOf <. R ,  x >. ) ) ) )
107 orcom 378 . . . . . . 7  |-  ( ( x  =  P  \/  ( POutsideOf <. Q ,  x >.  \/  POutsideOf <. R ,  x >. ) )  <->  ( ( POutsideOf
<. Q ,  x >.  \/  POutsideOf <. R ,  x >. )  \/  x  =  P ) )
108 or32 515 . . . . . . 7  |-  ( ( ( POutsideOf <. Q ,  x >.  \/  POutsideOf <. R ,  x >. )  \/  x  =  P )  <->  ( ( POutsideOf
<. Q ,  x >.  \/  x  =  P )  \/  POutsideOf <. R ,  x >. ) )
109107, 108bitri 242 . . . . . 6  |-  ( ( x  =  P  \/  ( POutsideOf <. Q ,  x >.  \/  POutsideOf <. R ,  x >. ) )  <->  ( ( POutsideOf
<. Q ,  x >.  \/  x  =  P )  \/  POutsideOf <. R ,  x >. ) )
110106, 109syl6bb 254 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( x  Colinear  <. P ,  Q >.  <->  (
( POutsideOf <. Q ,  x >.  \/  x  =  P )  \/  POutsideOf <. R ,  x >. ) ) )
111110an32s 782 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  P  Btwn  <. Q ,  R >. )  /\  x  e.  ( EE `  N
) )  ->  (
x  Colinear  <. P ,  Q >.  <-> 
( ( POutsideOf <. Q ,  x >.  \/  x  =  P )  \/  POutsideOf <. R ,  x >. ) ) )
112111rabbidva 2718 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  P  Btwn  <. Q ,  R >. )  ->  { x  e.  ( EE `  N
)  |  x  Colinear  <. P ,  Q >. }  =  { x  e.  ( EE `  N )  |  ( ( POutsideOf <. Q ,  x >.  \/  x  =  P )  \/  POutsideOf <. R ,  x >. ) } )
113 simp1 960 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  ->  N  e.  NN )
114 simp21 993 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  ->  P  e.  ( EE `  N ) )
115 simp22 994 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  ->  Q  e.  ( EE `  N ) )
116 simp3l 988 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  ->  P  =/=  Q )
117 fvline2 23943 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q ) )  -> 
( PLine Q )  =  { x  e.  ( EE `  N
)  |  x  Colinear  <. P ,  Q >. } )
118113, 114, 115, 116, 117syl13anc 1189 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  -> 
( PLine Q )  =  { x  e.  ( EE `  N
)  |  x  Colinear  <. P ,  Q >. } )
119118adantr 453 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( PLine Q )  =  {
x  e.  ( EE
`  N )  |  x  Colinear  <. P ,  Q >. } )
120 fvray 23938 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q ) )  -> 
( PRay Q )  =  { x  e.  ( EE `  N
)  |  POutsideOf <. Q ,  x >. } )
121113, 114, 115, 116, 120syl13anc 1189 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  -> 
( PRay Q )  =  { x  e.  ( EE `  N
)  |  POutsideOf <. Q ,  x >. } )
122 rabsn 3601 . . . . . . . . 9  |-  ( P  e.  ( EE `  N )  ->  { x  e.  ( EE `  N
)  |  x  =  P }  =  { P } )
123114, 122syl 17 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  ->  { x  e.  ( EE `  N )  |  x  =  P }  =  { P } )
124123eqcomd 2258 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  ->  { P }  =  {
x  e.  ( EE
`  N )  |  x  =  P }
)
125121, 124uneq12d 3240 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  -> 
( ( PRay Q
)  u.  { P } )  =  ( { x  e.  ( EE `  N )  |  POutsideOf <. Q ,  x >. }  u.  { x  e.  ( EE `  N
)  |  x  =  P } ) )
126 simp23 995 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  ->  R  e.  ( EE `  N ) )
127 simp3r 989 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  ->  P  =/=  R )
128 fvray 23938 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  P  =/=  R ) )  -> 
( PRay R )  =  { x  e.  ( EE `  N
)  |  POutsideOf <. R ,  x >. } )
129113, 114, 126, 127, 128syl13anc 1189 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  -> 
( PRay R )  =  { x  e.  ( EE `  N
)  |  POutsideOf <. R ,  x >. } )
130125, 129uneq12d 3240 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  -> 
( ( ( PRay Q )  u.  { P } )  u.  ( PRay R ) )  =  ( ( { x  e.  ( EE `  N
)  |  POutsideOf <. Q ,  x >. }  u.  {
x  e.  ( EE
`  N )  |  x  =  P }
)  u.  { x  e.  ( EE `  N
)  |  POutsideOf <. R ,  x >. } ) )
131130adantr 453 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( (
( PRay Q )  u.  { P }
)  u.  ( PRay R ) )  =  ( ( { x  e.  ( EE `  N
)  |  POutsideOf <. Q ,  x >. }  u.  {
x  e.  ( EE
`  N )  |  x  =  P }
)  u.  { x  e.  ( EE `  N
)  |  POutsideOf <. R ,  x >. } ) )
132 unrab 3346 . . . . . 6  |-  ( { x  e.  ( EE
`  N )  |  POutsideOf <. Q ,  x >. }  u.  { x  e.  ( EE `  N
)  |  x  =  P } )  =  { x  e.  ( EE `  N )  |  ( POutsideOf <. Q ,  x >.  \/  x  =  P ) }
133132uneq1i 3235 . . . . 5  |-  ( ( { x  e.  ( EE `  N )  |  POutsideOf <. Q ,  x >. }  u.  { x  e.  ( EE `  N
)  |  x  =  P } )  u. 
{ x  e.  ( EE `  N )  |  POutsideOf <. R ,  x >. } )  =  ( { x  e.  ( EE `  N )  |  ( POutsideOf <. Q ,  x >.  \/  x  =  P ) }  u.  { x  e.  ( EE
`  N )  |  POutsideOf <. R ,  x >. } )
134 unrab 3346 . . . . 5  |-  ( { x  e.  ( EE
`  N )  |  ( POutsideOf <. Q ,  x >.  \/  x  =  P ) }  u.  {
x  e.  ( EE
`  N )  |  POutsideOf <. R ,  x >. } )  =  {
x  e.  ( EE
`  N )  |  ( ( POutsideOf <. Q ,  x >.  \/  x  =  P )  \/  POutsideOf <. R ,  x >. ) }
135133, 134eqtri 2273 . . . 4  |-  ( ( { x  e.  ( EE `  N )  |  POutsideOf <. Q ,  x >. }  u.  { x  e.  ( EE `  N
)  |  x  =  P } )  u. 
{ x  e.  ( EE `  N )  |  POutsideOf <. R ,  x >. } )  =  {
x  e.  ( EE
`  N )  |  ( ( POutsideOf <. Q ,  x >.  \/  x  =  P )  \/  POutsideOf <. R ,  x >. ) }
136131, 135syl6eq 2301 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( (
( PRay Q )  u.  { P }
)  u.  ( PRay R ) )  =  { x  e.  ( EE `  N )  |  ( ( POutsideOf <. Q ,  x >.  \/  x  =  P )  \/  POutsideOf <. R ,  x >. ) } )
137112, 119, 1363eqtr4d 2295 . 2  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  /\  P  Btwn  <. Q ,  R >. )  ->  ( PLine Q )  =  ( ( ( PRay Q
)  u.  { P } )  u.  ( PRay R ) ) )
138137ex 425 1  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( P  =/=  Q  /\  P  =/=  R ) )  -> 
( P  Btwn  <. Q ,  R >.  ->  ( PLine Q )  =  ( ( ( PRay Q
)  u.  { P } )  u.  ( PRay R ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    \/ w3o 938    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   {crab 2512    u. cun 3076   {csn 3544   <.cop 3547   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   NNcn 9626   EEcee 23690    Btwn cbtwn 23691    Colinear ccolin 23834  OutsideOfcoutsideof 23916  Linecline2 23931  Raycray 23932
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-er 6546  df-ec 6548  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-sup 7078  df-oi 7109  df-card 7456  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839  df-sum 12036  df-ee 23693  df-btwn 23694  df-cgr 23695  df-ofs 23780  df-ifs 23836  df-cgr3 23837  df-colinear 23838  df-fs 23839  df-outsideof 23917  df-line2 23934  df-ray 23935
  Copyright terms: Public domain W3C validator