MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmbr Unicode version

Theorem lmbr 16820
Description: Express the binary relation "sequence  F converges to point  P " in a topological space. Definition 1.4-1 of [Kreyszig] p. 25. The condition  F  C_  ( CC 
X.  X ) allows us to use objects more general than sequences when convenient; see the comment in df-lm 16791. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypothesis
Ref Expression
lmbr.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
Assertion
Ref Expression
lmbr  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) ) )
Distinct variable groups:    y, u, F    u, J, y    ph, u    u, P    u, X, y
Allowed substitution hints:    ph( y)    P( y)

Proof of Theorem lmbr
StepHypRef Expression
1 lmbr.2 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 lmfval 16794 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( ~~> t `  J )  =  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
31, 2syl 17 . . 3  |-  ( ph  ->  ( ~~> t `  J
)  =  { <. f ,  x >.  |  ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) } )
43breqd 3931 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  F { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } P
) )
5 reseq1 4856 . . . . . . . . 9  |-  ( f  =  F  ->  (
f  |`  y )  =  ( F  |`  y
) )
65feq1d 5236 . . . . . . . 8  |-  ( f  =  F  ->  (
( f  |`  y
) : y --> u  <-> 
( F  |`  y
) : y --> u ) )
76rexbidv 2528 . . . . . . 7  |-  ( f  =  F  ->  ( E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u  <->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) )
87imbi2d 309 . . . . . 6  |-  ( f  =  F  ->  (
( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u )  <->  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
98ralbidv 2527 . . . . 5  |-  ( f  =  F  ->  ( A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u )  <->  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
10 eleq1 2313 . . . . . . 7  |-  ( x  =  P  ->  (
x  e.  u  <->  P  e.  u ) )
1110imbi1d 310 . . . . . 6  |-  ( x  =  P  ->  (
( x  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u )  <-> 
( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
1211ralbidv 2527 . . . . 5  |-  ( x  =  P  ->  ( A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u )  <->  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
139, 12sylan9bb 683 . . . 4  |-  ( ( f  =  F  /\  x  =  P )  ->  ( A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u )  <->  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
14 df-3an 941 . . . . 5  |-  ( ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) )  <->  ( (
f  e.  ( X 
^pm  CC )  /\  x  e.  X )  /\  A. u  e.  J  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) )
1514opabbii 3980 . . . 4  |-  { <. f ,  x >.  |  ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }  =  { <. f ,  x >.  |  (
( f  e.  ( X  ^pm  CC )  /\  x  e.  X
)  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }
1613, 15brab2ga 4670 . . 3  |-  ( F { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } P  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
17 df-3an 941 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
1816, 17bitr4i 245 . 2  |-  ( F { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } P  <->  ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
194, 18syl6bb 254 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2509   E.wrex 2510   class class class wbr 3920   {copab 3973   ran crn 4581    |` cres 4582   -->wf 4588   ` cfv 4592  (class class class)co 5710    ^pm cpm 6659   CCcc 8615   ZZ>=cuz 10109  TopOnctopon 16464   ~~> tclm 16788
This theorem is referenced by:  lmbr2  16821  lmfpm  16855  lmcl  16857  lmff  16861  lmmbr  18516
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-fv 4608  df-ov 5713  df-top 16468  df-topon 16471  df-lm 16791
  Copyright terms: Public domain W3C validator