MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmbr2 Unicode version

Theorem lmbr2 17005
Description: Express the binary relation "sequence  F converges to point  P " in a metric space using an arbitrary set of upper integers. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmbr.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
lmbr2.4  |-  Z  =  ( ZZ>= `  M )
lmbr2.5  |-  ( ph  ->  M  e.  ZZ )
Assertion
Ref Expression
lmbr2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) ) )
Distinct variable groups:    j, k, u, F    j, J, k, u    ph, j, k, u   
j, Z, k, u   
j, M    P, j,
k, u    j, X, k, u
Allowed substitution hints:    M( u, k)

Proof of Theorem lmbr2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 lmbr.2 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
21lmbr 17004 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u ) ) ) )
3 uzf 10249 . . . . . . . 8  |-  ZZ>= : ZZ --> ~P ZZ
4 ffn 5405 . . . . . . . 8  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
5 reseq2 4966 . . . . . . . . . 10  |-  ( z  =  ( ZZ>= `  j
)  ->  ( F  |`  z )  =  ( F  |`  ( ZZ>= `  j ) ) )
6 id 19 . . . . . . . . . 10  |-  ( z  =  ( ZZ>= `  j
)  ->  z  =  ( ZZ>= `  j )
)
75, 6feq12d 5397 . . . . . . . . 9  |-  ( z  =  ( ZZ>= `  j
)  ->  ( ( F  |`  z ) : z --> u  <->  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> u ) )
87rexrn 5683 . . . . . . . 8  |-  ( ZZ>=  Fn  ZZ  ->  ( E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> u ) )
93, 4, 8mp2b 9 . . . . . . 7  |-  ( E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> u )
10 pmfun 6806 . . . . . . . . . . 11  |-  ( F  e.  ( X  ^pm  CC )  ->  Fun  F )
1110ad2antrl 708 . . . . . . . . . 10  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  Fun  F )
12 ffvresb 5706 . . . . . . . . . 10  |-  ( Fun 
F  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> u  <->  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
1311, 12syl 15 . . . . . . . . 9  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  (
( F  |`  ( ZZ>=
`  j ) ) : ( ZZ>= `  j
) --> u  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )
1413rexbidv 2577 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> u 
<->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
15 lmbr2.5 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
1615adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  M  e.  ZZ )
17 lmbr2.4 . . . . . . . . . 10  |-  Z  =  ( ZZ>= `  M )
1817rexuz3 11848 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
1916, 18syl 15 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
2014, 19bitr4d 247 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> u 
<->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
219, 20syl5bb 248 . . . . . 6  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )
2221imbi2d 307 . . . . 5  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  (
( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u )  <-> 
( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
2322ralbidv 2576 . . . 4  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u )  <->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
2423pm5.32da 622 . . 3  |-  ( ph  ->  ( ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) ) )
25 df-3an 936 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u ) ) )
26 df-3an 936 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) )
2724, 25, 263bitr4g 279 . 2  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u ) )  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) ) )
282, 27bitrd 244 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   ~Pcpw 3638   class class class wbr 4039   dom cdm 4705   ran crn 4706    |` cres 4707   Fun wfun 5265    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874    ^pm cpm 6789   CCcc 8751   ZZcz 10040   ZZ>=cuz 10246  TopOnctopon 16648   ~~> tclm 16972
This theorem is referenced by:  lmbrf  17006  lmcvg  17008  lmres  17044  lmcls  17046  lmcnp  17048
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-pre-lttri 8827  ax-pre-lttrn 8828
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-er 6676  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-neg 9056  df-z 10041  df-uz 10247  df-top 16652  df-topon 16655  df-lm 16975
  Copyright terms: Public domain W3C validator