Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmclim2 Structured version   Unicode version

Theorem lmclim2 26455
Description: A sequence in a metric space converges to a point iff the distance between the point and the elements of the sequence converges to 0. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
lmclim2.2  |-  ( ph  ->  D  e.  ( Met `  X ) )
lmclim2.3  |-  ( ph  ->  F : NN --> X )
lmclim2.4  |-  J  =  ( MetOpen `  D )
lmclim2.5  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) D Y ) )
lmclim2.6  |-  ( ph  ->  Y  e.  X )
Assertion
Ref Expression
lmclim2  |-  ( ph  ->  ( F ( ~~> t `  J ) Y  <->  G  ~~>  0 ) )
Distinct variable groups:    x, D    x, F    x, G    x, J    x, X    ph, x    x, Y

Proof of Theorem lmclim2
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmclim2.4 . . 3  |-  J  =  ( MetOpen `  D )
2 lmclim2.2 . . . 4  |-  ( ph  ->  D  e.  ( Met `  X ) )
3 metxmet 18356 . . . 4  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( * Met `  X
) )
42, 3syl 16 . . 3  |-  ( ph  ->  D  e.  ( * Met `  X ) )
5 nnuz 10513 . . 3  |-  NN  =  ( ZZ>= `  1 )
6 1z 10303 . . . 4  |-  1  e.  ZZ
76a1i 11 . . 3  |-  ( ph  ->  1  e.  ZZ )
8 eqidd 2436 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( F `  k
) )
9 lmclim2.3 . . 3  |-  ( ph  ->  F : NN --> X )
101, 4, 5, 7, 8, 9lmmbrf 19207 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) Y  <->  ( Y  e.  X  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D Y )  <  x ) ) )
11 lmclim2.5 . . . . . 6  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) D Y ) )
12 nnex 9998 . . . . . . 7  |-  NN  e.  _V
1312mptex 5958 . . . . . 6  |-  ( x  e.  NN  |->  ( ( F `  x ) D Y ) )  e.  _V
1411, 13eqeltri 2505 . . . . 5  |-  G  e. 
_V
1514a1i 11 . . . 4  |-  ( ph  ->  G  e.  _V )
16 fveq2 5720 . . . . . . 7  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
1716oveq1d 6088 . . . . . 6  |-  ( x  =  k  ->  (
( F `  x
) D Y )  =  ( ( F `
 k ) D Y ) )
18 ovex 6098 . . . . . 6  |-  ( ( F `  k ) D Y )  e. 
_V
1917, 11, 18fvmpt 5798 . . . . 5  |-  ( k  e.  NN  ->  ( G `  k )  =  ( ( F `
 k ) D Y ) )
2019adantl 453 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  =  ( ( F `  k ) D Y ) )
212adantr 452 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  D  e.  ( Met `  X
) )
229ffvelrnda 5862 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  X )
23 lmclim2.6 . . . . . . 7  |-  ( ph  ->  Y  e.  X )
2423adantr 452 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  Y  e.  X )
25 metcl 18354 . . . . . 6  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  k )  e.  X  /\  Y  e.  X )  ->  (
( F `  k
) D Y )  e.  RR )
2621, 22, 24, 25syl3anc 1184 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k ) D Y )  e.  RR )
2726recnd 9106 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k ) D Y )  e.  CC )
285, 7, 15, 20, 27clim0c 12293 . . 3  |-  ( ph  ->  ( G  ~~>  0  <->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
) D Y ) )  <  x ) )
295uztrn2 10495 . . . . . . . 8  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
30 metge0 18367 . . . . . . . . . . 11  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  k )  e.  X  /\  Y  e.  X )  ->  0  <_  ( ( F `  k ) D Y ) )
3121, 22, 24, 30syl3anc 1184 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( ( F `  k ) D Y ) )
3226, 31absidd 12217 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( F `  k ) D Y ) )  =  ( ( F `  k
) D Y ) )
3332breq1d 4214 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  ( ( F `  k ) D Y ) )  <  x  <->  ( ( F `  k ) D Y )  <  x
) )
3429, 33sylan2 461 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( abs `  (
( F `  k
) D Y ) )  <  x  <->  ( ( F `  k ) D Y )  <  x
) )
3534anassrs 630 . . . . . 6  |-  ( ( ( ph  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  ( ( F `
 k ) D Y ) )  < 
x  <->  ( ( F `
 k ) D Y )  <  x
) )
3635ralbidva 2713 . . . . 5  |-  ( (
ph  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k ) D Y ) )  <  x  <->  A. k  e.  ( ZZ>= `  j ) ( ( F `  k ) D Y )  < 
x ) )
3736rexbidva 2714 . . . 4  |-  ( ph  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
) D Y ) )  <  x  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D Y )  <  x ) )
3837ralbidv 2717 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k ) D Y ) )  <  x  <->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D Y )  <  x ) )
3923biantrurd 495 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k ) D Y )  < 
x  <->  ( Y  e.  X  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D Y )  <  x ) ) )
4028, 38, 393bitrrd 272 . 2  |-  ( ph  ->  ( ( Y  e.  X  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D Y )  <  x )  <-> 
G  ~~>  0 ) )
4110, 40bitrd 245 1  |-  ( ph  ->  ( F ( ~~> t `  J ) Y  <->  G  ~~>  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   _Vcvv 2948   class class class wbr 4204    e. cmpt 4258   -->wf 5442   ` cfv 5446  (class class class)co 6073   RRcr 8981   0cc0 8982   1c1 8983    < clt 9112    <_ cle 9113   NNcn 9992   ZZcz 10274   ZZ>=cuz 10480   RR+crp 10604   abscabs 12031    ~~> cli 12270   * Metcxmt 16678   Metcme 16679   MetOpencmopn 16683   ~~> tclm 17282
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-map 7012  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-topgen 13659  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-top 16955  df-bases 16957  df-topon 16958  df-lm 17285
  Copyright terms: Public domain W3C validator