MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmbr2 Unicode version

Theorem lmmbr2 18681
Description: Express the binary relation "sequence  F converges to point  P " in a metric space. Definition 1.4-1 of [Kreyszig] p. 25. The condition  F  C_  ( CC  X.  X ) allows us to use objects more general than sequences when convenient; see the comment in df-lm 16955. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2  |-  J  =  ( MetOpen `  D )
lmmbr.3  |-  ( ph  ->  D  e.  ( * Met `  X ) )
Assertion
Ref Expression
lmmbr2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) ) )
Distinct variable groups:    j, k, x, D    j, F, k, x    P, j, k, x   
j, X, k, x   
x, J    ph, j, k, x
Dummy variable  y is distinct from all other variables.
Allowed substitution groups:    J( j, k)

Proof of Theorem lmmbr2
StepHypRef Expression
1 lmmbr.2 . . 3  |-  J  =  ( MetOpen `  D )
2 lmmbr.3 . . 3  |-  ( ph  ->  D  e.  ( * Met `  X ) )
31, 2lmmbr 18680 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) ) ) )
4 df-3an 938 . . . 4  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e. 
ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) ) )
5 uzf 10230 . . . . . . . . . 10  |-  ZZ>= : ZZ --> ~P ZZ
6 ffn 5356 . . . . . . . . . 10  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
7 reseq2 4951 . . . . . . . . . . . 12  |-  ( y  =  ( ZZ>= `  j
)  ->  ( F  |`  y )  =  ( F  |`  ( ZZ>= `  j ) ) )
8 id 21 . . . . . . . . . . . 12  |-  ( y  =  ( ZZ>= `  j
)  ->  y  =  ( ZZ>= `  j )
)
97, 8feq12d 5348 . . . . . . . . . . 11  |-  ( y  =  ( ZZ>= `  j
)  ->  ( ( F  |`  y ) : y --> ( P (
ball `  D )
x )  <->  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> ( P ( ball `  D
) x ) ) )
109rexrn 5630 . . . . . . . . . 10  |-  ( ZZ>=  Fn  ZZ  ->  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x )  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> ( P ( ball `  D
) x ) ) )
115, 6, 10mp2b 11 . . . . . . . . 9  |-  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x )  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> ( P ( ball `  D
) x ) )
12 simp2l 983 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  F  e.  ( X  ^pm  CC ) )
13 elfvdm 5517 . . . . . . . . . . . . . . . 16  |-  ( D  e.  ( * Met `  X )  ->  X  e.  dom  * Met )
14133ad2ant1 978 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  X  e.  dom  * Met )
15 cnex 8815 . . . . . . . . . . . . . . 15  |-  CC  e.  _V
16 elpmg 6783 . . . . . . . . . . . . . . 15  |-  ( ( X  e.  dom  * Met  /\  CC  e.  _V )  ->  ( F  e.  ( X  ^pm  CC ) 
<->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) ) )
1714, 15, 16sylancl 645 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( F  e.  ( X  ^pm  CC ) 
<->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) ) )
1812, 17mpbid 203 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) )
1918simpld 447 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  Fun  F )
20 ffvresb 5653 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( P ( ball `  D
) x )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( P ( ball `  D
) x ) ) ) )
2119, 20syl 17 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( P ( ball `  D
) x )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( P ( ball `  D
) x ) ) ) )
22 rpxr 10358 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR+  ->  x  e. 
RR* )
23 elbl 17945 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  x  e.  RR* )  ->  ( ( F `  k )  e.  ( P ( ball `  D
) x )  <->  ( ( F `  k )  e.  X  /\  ( P D ( F `  k ) )  < 
x ) ) )
2422, 23syl3an3 1219 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  x  e.  RR+ )  ->  ( ( F `  k )  e.  ( P ( ball `  D
) x )  <->  ( ( F `  k )  e.  X  /\  ( P D ( F `  k ) )  < 
x ) ) )
25 xmetsym 17908 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  ( F `  k
)  e.  X )  ->  ( P D ( F `  k
) )  =  ( ( F `  k
) D P ) )
2625breq1d 4036 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  ( F `  k
)  e.  X )  ->  ( ( P D ( F `  k ) )  < 
x  <->  ( ( F `
 k ) D P )  <  x
) )
27263expa 1153 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( F `  k )  e.  X )  ->  (
( P D ( F `  k ) )  <  x  <->  ( ( F `  k ) D P )  <  x
) )
2827pm5.32da 624 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X
)  ->  ( (
( F `  k
)  e.  X  /\  ( P D ( F `
 k ) )  <  x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
29283adant3 977 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  x  e.  RR+ )  ->  ( ( ( F `
 k )  e.  X  /\  ( P D ( F `  k ) )  < 
x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
3024, 29bitrd 246 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  x  e.  RR+ )  ->  ( ( F `  k )  e.  ( P ( ball `  D
) x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
31303adant2l 1178 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( ( F `  k )  e.  ( P ( ball `  D ) x )  <-> 
( ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3231anbi2d 686 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  ( P ( ball `  D
) x ) )  <-> 
( k  e.  dom  F  /\  ( ( F `
 k )  e.  X  /\  ( ( F `  k ) D P )  < 
x ) ) ) )
33 3anass 940 . . . . . . . . . . . . 13  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D P )  <  x )  <-> 
( k  e.  dom  F  /\  ( ( F `
 k )  e.  X  /\  ( ( F `  k ) D P )  < 
x ) ) )
3432, 33syl6bbr 256 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  ( P ( ball `  D
) x ) )  <-> 
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3534ralbidv 2566 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  ( P (
ball `  D )
x ) )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3621, 35bitrd 246 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( P ( ball `  D
) x )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3736rexbidv 2567 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( P ( ball `  D
) x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3811, 37syl5bb 250 . . . . . . . 8  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
39383expa 1153 . . . . . . 7  |-  ( ( ( D  e.  ( * Met `  X
)  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  /\  x  e.  RR+ )  ->  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
4039ralbidva 2562 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
4140pm5.32da 624 . . . . 5  |-  ( D  e.  ( * Met `  X )  ->  (
( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  A. x  e.  RR+  E. y  e. 
ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) ) )
422, 41syl 17 . . . 4  |-  ( ph  ->  ( ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) ) )
434, 42syl5bb 250 . . 3  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) )  <-> 
( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) ) )
44 df-3an 938 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
4543, 44syl6bbr 256 . 2  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) )  <-> 
( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) ) )
463, 45bitrd 246 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1625    e. wcel 1687   A.wral 2546   E.wrex 2547   _Vcvv 2791    C_ wss 3155   ~Pcpw 3628   class class class wbr 4026    X. cxp 4688   dom cdm 4690   ran crn 4691    |` cres 4692   Fun wfun 5217    Fn wfn 5218   -->wf 5219   ` cfv 5223  (class class class)co 5821    ^pm cpm 6770   CCcc 8732   RR*cxr 8863    < clt 8864   ZZcz 10021   ZZ>=cuz 10227   RR+crp 10351   * Metcxmt 16365   ballcbl 16367   MetOpencmopn 16368   ~~> tclm 16952
This theorem is referenced by:  lmmbr3  18682
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1638  ax-8 1646  ax-13 1689  ax-14 1691  ax-6 1706  ax-7 1711  ax-11 1718  ax-12 1870  ax-ext 2267  ax-sep 4144  ax-nul 4152  ax-pow 4189  ax-pr 4215  ax-un 4513  ax-cnex 8790  ax-resscn 8791  ax-1cn 8792  ax-icn 8793  ax-addcl 8794  ax-addrcl 8795  ax-mulcl 8796  ax-mulrcl 8797  ax-mulcom 8798  ax-addass 8799  ax-mulass 8800  ax-distr 8801  ax-i2m1 8802  ax-1ne0 8803  ax-1rid 8804  ax-rnegex 8805  ax-rrecex 8806  ax-cnre 8807  ax-pre-lttri 8808  ax-pre-lttrn 8809  ax-pre-ltadd 8810  ax-pre-mulgt0 8811  ax-pre-sup 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1531  df-nf 1534  df-sb 1633  df-eu 2150  df-mo 2151  df-clab 2273  df-cleq 2279  df-clel 2282  df-nfc 2411  df-ne 2451  df-nel 2452  df-ral 2551  df-rex 2552  df-reu 2553  df-rmo 2554  df-rab 2555  df-v 2793  df-sbc 2995  df-csb 3085  df-dif 3158  df-un 3160  df-in 3162  df-ss 3169  df-pss 3171  df-nul 3459  df-if 3569  df-pw 3630  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3831  df-iun 3910  df-br 4027  df-opab 4081  df-mpt 4082  df-tr 4117  df-eprel 4306  df-id 4310  df-po 4315  df-so 4316  df-fr 4353  df-we 4355  df-ord 4396  df-on 4397  df-lim 4398  df-suc 4399  df-om 4658  df-xp 4696  df-rel 4697  df-cnv 4698  df-co 4699  df-dm 4700  df-rn 4701  df-res 4702  df-ima 4703  df-fun 5225  df-fn 5226  df-f 5227  df-f1 5228  df-fo 5229  df-f1o 5230  df-fv 5231  df-ov 5824  df-oprab 5825  df-mpt2 5826  df-1st 6085  df-2nd 6086  df-iota 6254  df-riota 6301  df-recs 6385  df-rdg 6420  df-er 6657  df-map 6771  df-pm 6772  df-en 6861  df-dom 6862  df-sdom 6863  df-sup 7191  df-pnf 8866  df-mnf 8867  df-xr 8868  df-ltxr 8869  df-le 8870  df-sub 9036  df-neg 9037  df-div 9421  df-nn 9744  df-2 9801  df-n0 9963  df-z 10022  df-uz 10228  df-q 10314  df-rp 10352  df-xneg 10449  df-xadd 10450  df-xmul 10451  df-topgen 13340  df-xmet 16369  df-bl 16371  df-mopn 16372  df-top 16632  df-bases 16634  df-topon 16635  df-lm 16955
  Copyright terms: Public domain W3C validator