MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmbrf Structured version   Unicode version

Theorem lmmbrf 19215
Description: Express the binary relation "sequence  F converges to point  P " in a metric space using an abitrary set of upper integers. This version of lmmbr2 19212 presupposes that  F is a function. (Contributed by NM, 20-Jul-2007.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2  |-  J  =  ( MetOpen `  D )
lmmbr.3  |-  ( ph  ->  D  e.  ( * Met `  X ) )
lmmbr3.5  |-  Z  =  ( ZZ>= `  M )
lmmbr3.6  |-  ( ph  ->  M  e.  ZZ )
lmmbrf.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
lmmbrf.8  |-  ( ph  ->  F : Z --> X )
Assertion
Ref Expression
lmmbrf  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( A D P )  <  x ) ) )
Distinct variable groups:    j, k, x, D    j, F, k, x    P, j, k, x   
j, X, k, x   
x, J    j, M    ph, j, k, x    j, Z, k, x
Allowed substitution hints:    A( x, j, k)    J( j, k)    M( x, k)

Proof of Theorem lmmbrf
StepHypRef Expression
1 lmmbr.3 . . . 4  |-  ( ph  ->  D  e.  ( * Met `  X ) )
2 lmmbrf.8 . . . 4  |-  ( ph  ->  F : Z --> X )
3 elfvdm 5757 . . . . . 6  |-  ( D  e.  ( * Met `  X )  ->  X  e.  dom  * Met )
4 cnex 9071 . . . . . 6  |-  CC  e.  _V
53, 4jctir 525 . . . . 5  |-  ( D  e.  ( * Met `  X )  ->  ( X  e.  dom  * Met  /\  CC  e.  _V )
)
6 lmmbr3.5 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
7 uzssz 10505 . . . . . . . 8  |-  ( ZZ>= `  M )  C_  ZZ
8 zsscn 10290 . . . . . . . 8  |-  ZZ  C_  CC
97, 8sstri 3357 . . . . . . 7  |-  ( ZZ>= `  M )  C_  CC
106, 9eqsstri 3378 . . . . . 6  |-  Z  C_  CC
1110jctr 527 . . . . 5  |-  ( F : Z --> X  -> 
( F : Z --> X  /\  Z  C_  CC ) )
12 elpm2r 7034 . . . . 5  |-  ( ( ( X  e.  dom  * Met  /\  CC  e.  _V )  /\  ( F : Z --> X  /\  Z  C_  CC ) )  ->  F  e.  ( X  ^pm  CC )
)
135, 11, 12syl2an 464 . . . 4  |-  ( ( D  e.  ( * Met `  X )  /\  F : Z --> X )  ->  F  e.  ( X  ^pm  CC ) )
141, 2, 13syl2anc 643 . . 3  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
1514biantrurd 495 . 2  |-  ( ph  ->  ( ( P  e.  X  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) )  <->  ( F  e.  ( X  ^pm  CC )  /\  ( P  e.  X  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) ) ) )
166uztrn2 10503 . . . . . . . 8  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
1716adantll 695 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  Z )
18 lmmbrf.7 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
1918oveq1d 6096 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
) D P )  =  ( A D P ) )
2019breq1d 4222 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( F `  k ) D P )  <  x  <->  ( A D P )  <  x
) )
2120adantrl 697 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  Z ) )  -> 
( ( ( F `
 k ) D P )  <  x  <->  ( A D P )  <  x ) )
22 fdm 5595 . . . . . . . . . . . . . . . 16  |-  ( F : Z --> X  ->  dom  F  =  Z )
232, 22syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  F  =  Z )
2423eleq2d 2503 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  dom  F  <-> 
k  e.  Z ) )
2524biimpar 472 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  dom  F )
262ffvelrnda 5870 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  X )
2725, 26jca 519 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  (
k  e.  dom  F  /\  ( F `  k
)  e.  X ) )
2827biantrurd 495 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( F `  k ) D P )  <  x  <->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  X )  /\  ( ( F `
 k ) D P )  <  x
) ) )
29 df-3an 938 . . . . . . . . . . 11  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D P )  <  x )  <-> 
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  (
( F `  k
) D P )  <  x ) )
3028, 29syl6bbr 255 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( F `  k ) D P )  <  x  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
3130adantrl 697 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  Z ) )  -> 
( ( ( F `
 k ) D P )  <  x  <->  ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3221, 31bitr3d 247 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  Z ) )  -> 
( ( A D P )  <  x  <->  ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3332anassrs 630 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  Z )  ->  (
( A D P )  <  x  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
3417, 33syldan 457 . . . . . 6  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( A D P )  < 
x  <->  ( k  e. 
dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
3534ralbidva 2721 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( A D P )  <  x  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3635rexbidva 2722 . . . 4  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( A D P )  <  x  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3736ralbidv 2725 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( A D P )  <  x  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3837anbi2d 685 . 2  |-  ( ph  ->  ( ( P  e.  X  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( A D P )  <  x )  <-> 
( P  e.  X  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) ) )
39 lmmbr.2 . . . 4  |-  J  =  ( MetOpen `  D )
40 lmmbr3.6 . . . 4  |-  ( ph  ->  M  e.  ZZ )
4139, 1, 6, 40lmmbr3 19213 . . 3  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) ) )
42 3anass 940 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) )  <->  ( F  e.  ( X  ^pm  CC )  /\  ( P  e.  X  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) ) )
4341, 42syl6bb 253 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  ( P  e.  X  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) ) ) )
4415, 38, 433bitr4rd 278 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( A D P )  <  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2705   E.wrex 2706   _Vcvv 2956    C_ wss 3320   class class class wbr 4212   dom cdm 4878   -->wf 5450   ` cfv 5454  (class class class)co 6081    ^pm cpm 7019   CCcc 8988    < clt 9120   ZZcz 10282   ZZ>=cuz 10488   RR+crp 10612   * Metcxmt 16686   MetOpencmopn 16691   ~~> tclm 17290
This theorem is referenced by:  lmnn  19216  h2hlm  22483  lmclim2  26464  heibor1lem  26518  rrncmslem  26541
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-map 7020  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-n0 10222  df-z 10283  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-topgen 13667  df-psmet 16694  df-xmet 16695  df-bl 16697  df-mopn 16698  df-top 16963  df-bases 16965  df-topon 16966  df-lm 17293
  Copyright terms: Public domain W3C validator