MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmo Unicode version

Theorem lmmo 17432
Description: A sequence in a Hausdorff space converges to at most one limit. Part of Lemma 1.4-2(a) of [Kreyszig] p. 26. (Contributed by NM, 31-Jan-2008.) (Proof shortened by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmo.1  |-  ( ph  ->  J  e.  Haus )
lmmo.4  |-  ( ph  ->  F ( ~~> t `  J ) A )
lmmo.5  |-  ( ph  ->  F ( ~~> t `  J ) B )
Assertion
Ref Expression
lmmo  |-  ( ph  ->  A  =  B )

Proof of Theorem lmmo
Dummy variables  j 
k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 an4 798 . . . . . . . . 9  |-  ( ( ( x  e.  J  /\  y  e.  J
)  /\  ( A  e.  x  /\  B  e.  y ) )  <->  ( (
x  e.  J  /\  A  e.  x )  /\  ( y  e.  J  /\  B  e.  y
) ) )
2 nnuz 10510 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
3 simprr 734 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  ->  A  e.  x )
4 1z 10300 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
54a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  -> 
1  e.  ZZ )
6 lmmo.4 . . . . . . . . . . . . . 14  |-  ( ph  ->  F ( ~~> t `  J ) A )
76adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  ->  F ( ~~> t `  J ) A )
8 simprl 733 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  ->  x  e.  J )
92, 3, 5, 7, 8lmcvg 17314 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  x )
109ex 424 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  J  /\  A  e.  x )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  x ) )
11 simprr 734 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  ->  B  e.  y )
124a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  -> 
1  e.  ZZ )
13 lmmo.5 . . . . . . . . . . . . . 14  |-  ( ph  ->  F ( ~~> t `  J ) B )
1413adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  ->  F ( ~~> t `  J ) B )
15 simprl 733 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  -> 
y  e.  J )
162, 11, 12, 14, 15lmcvg 17314 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  y )
1716ex 424 . . . . . . . . . . 11  |-  ( ph  ->  ( ( y  e.  J  /\  B  e.  y )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  y ) )
1810, 17anim12d 547 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( x  e.  J  /\  A  e.  x )  /\  (
y  e.  J  /\  B  e.  y )
)  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  x  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  y ) ) )
192rexanuz2 12141 . . . . . . . . . . 11  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y )  <->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  x  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  y ) )
20 nnz 10292 . . . . . . . . . . . . . 14  |-  ( j  e.  NN  ->  j  e.  ZZ )
21 uzid 10489 . . . . . . . . . . . . . 14  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
22 ne0i 3626 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( ZZ>= `  j )  =/=  (/) )
2320, 21, 223syl 19 . . . . . . . . . . . . 13  |-  ( j  e.  NN  ->  ( ZZ>=
`  j )  =/=  (/) )
24 r19.2z 3709 . . . . . . . . . . . . . 14  |-  ( ( ( ZZ>= `  j )  =/=  (/)  /\  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  x  /\  ( F `  k
)  e.  y ) )  ->  E. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  x  /\  ( F `  k
)  e.  y ) )
25 elin 3522 . . . . . . . . . . . . . . . 16  |-  ( ( F `  k )  e.  ( x  i^i  y )  <->  ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y ) )
26 n0i 3625 . . . . . . . . . . . . . . . 16  |-  ( ( F `  k )  e.  ( x  i^i  y )  ->  -.  ( x  i^i  y
)  =  (/) )
2725, 26sylbir 205 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  k
)  e.  x  /\  ( F `  k )  e.  y )  ->  -.  ( x  i^i  y
)  =  (/) )
2827rexlimivw 2818 . . . . . . . . . . . . . 14  |-  ( E. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y )  ->  -.  ( x  i^i  y
)  =  (/) )
2924, 28syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ZZ>= `  j )  =/=  (/)  /\  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  x  /\  ( F `  k
)  e.  y ) )  ->  -.  (
x  i^i  y )  =  (/) )
3023, 29sylan 458 . . . . . . . . . . . 12  |-  ( ( j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y ) )  ->  -.  ( x  i^i  y
)  =  (/) )
3130rexlimiva 2817 . . . . . . . . . . 11  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y )  ->  -.  ( x  i^i  y
)  =  (/) )
3219, 31sylbir 205 . . . . . . . . . 10  |-  ( ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  x  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  y )  ->  -.  ( x  i^i  y )  =  (/) )
3318, 32syl6 31 . . . . . . . . 9  |-  ( ph  ->  ( ( ( x  e.  J  /\  A  e.  x )  /\  (
y  e.  J  /\  B  e.  y )
)  ->  -.  (
x  i^i  y )  =  (/) ) )
341, 33syl5bi 209 . . . . . . . 8  |-  ( ph  ->  ( ( ( x  e.  J  /\  y  e.  J )  /\  ( A  e.  x  /\  B  e.  y )
)  ->  -.  (
x  i^i  y )  =  (/) ) )
3534expdimp 427 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( ( A  e.  x  /\  B  e.  y )  ->  -.  ( x  i^i  y
)  =  (/) ) )
36 imnan 412 . . . . . . 7  |-  ( ( ( A  e.  x  /\  B  e.  y
)  ->  -.  (
x  i^i  y )  =  (/) )  <->  -.  (
( A  e.  x  /\  B  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )
3735, 36sylib 189 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J ) )  ->  -.  ( ( A  e.  x  /\  B  e.  y )  /\  (
x  i^i  y )  =  (/) ) )
38 df-3an 938 . . . . . 6  |-  ( ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) )  <->  ( ( A  e.  x  /\  B  e.  y )  /\  ( x  i^i  y
)  =  (/) ) )
3937, 38sylnibr 297 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J ) )  ->  -.  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
4039anassrs 630 . . . 4  |-  ( ( ( ph  /\  x  e.  J )  /\  y  e.  J )  ->  -.  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
4140nrexdv 2801 . . 3  |-  ( (
ph  /\  x  e.  J )  ->  -.  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
4241nrexdv 2801 . 2  |-  ( ph  ->  -.  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y )  =  (/) ) )
43 lmmo.1 . . . 4  |-  ( ph  ->  J  e.  Haus )
44 haustop 17383 . . . . . . 7  |-  ( J  e.  Haus  ->  J  e. 
Top )
4543, 44syl 16 . . . . . 6  |-  ( ph  ->  J  e.  Top )
46 eqid 2435 . . . . . . 7  |-  U. J  =  U. J
4746toptopon 16986 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
4845, 47sylib 189 . . . . 5  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
49 lmcl 17349 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  F
( ~~> t `  J
) A )  ->  A  e.  U. J )
5048, 6, 49syl2anc 643 . . . 4  |-  ( ph  ->  A  e.  U. J
)
51 lmcl 17349 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  F
( ~~> t `  J
) B )  ->  B  e.  U. J )
5248, 13, 51syl2anc 643 . . . 4  |-  ( ph  ->  B  e.  U. J
)
5346hausnei 17380 . . . . 5  |-  ( ( J  e.  Haus  /\  ( A  e.  U. J  /\  B  e.  U. J  /\  A  =/=  B ) )  ->  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
54533exp2 1171 . . . 4  |-  ( J  e.  Haus  ->  ( A  e.  U. J  -> 
( B  e.  U. J  ->  ( A  =/= 
B  ->  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y )  =  (/) ) ) ) ) )
5543, 50, 52, 54syl3c 59 . . 3  |-  ( ph  ->  ( A  =/=  B  ->  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) ) )
5655necon1bd 2666 . 2  |-  ( ph  ->  ( -.  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y )  =  (/) )  ->  A  =  B ) )
5742, 56mpd 15 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698    i^i cin 3311   (/)c0 3620   U.cuni 4007   class class class wbr 4204   ` cfv 5445   1c1 8980   NNcn 9989   ZZcz 10271   ZZ>=cuz 10477   Topctop 16946  TopOnctopon 16947   ~~> tclm 17278   Hauscha 17360
This theorem is referenced by:  lmfun  17433  occllem  22793  nlelchi  23552  hmopidmchi  23642
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-er 6896  df-pm 7012  df-en 7101  df-dom 7102  df-sdom 7103  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-nn 9990  df-z 10272  df-uz 10478  df-top 16951  df-topon 16954  df-lm 17281  df-haus 17367
  Copyright terms: Public domain W3C validator