MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmo Unicode version

Theorem lmmo 17035
Description: A sequence in a Hausdorff space converges to at most one limit. Part of Lemma 1.4-2(a) of [Kreyszig] p. 26. (Contributed by NM, 31-Jan-2008.) (Proof shortened by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmo.1  |-  ( ph  ->  J  e.  Haus )
lmmo.4  |-  ( ph  ->  F ( ~~> t `  J ) A )
lmmo.5  |-  ( ph  ->  F ( ~~> t `  J ) B )
Assertion
Ref Expression
lmmo  |-  ( ph  ->  A  =  B )

Proof of Theorem lmmo
StepHypRef Expression
1 an4 800 . . . . . . . . 9  |-  ( ( ( x  e.  J  /\  y  e.  J
)  /\  ( A  e.  x  /\  B  e.  y ) )  <->  ( (
x  e.  J  /\  A  e.  x )  /\  ( y  e.  J  /\  B  e.  y
) ) )
2 nnuz 10195 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
3 simprr 736 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  ->  A  e.  x )
4 1z 9985 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
54a1i 12 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  -> 
1  e.  ZZ )
6 lmmo.4 . . . . . . . . . . . . . 14  |-  ( ph  ->  F ( ~~> t `  J ) A )
76adantr 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  ->  F ( ~~> t `  J ) A )
8 simprl 735 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  ->  x  e.  J )
92, 3, 5, 7, 8lmcvg 16919 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  x )
109ex 425 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  J  /\  A  e.  x )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  x ) )
11 simprr 736 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  ->  B  e.  y )
124a1i 12 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  -> 
1  e.  ZZ )
13 lmmo.5 . . . . . . . . . . . . . 14  |-  ( ph  ->  F ( ~~> t `  J ) B )
1413adantr 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  ->  F ( ~~> t `  J ) B )
15 simprl 735 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  -> 
y  e.  J )
162, 11, 12, 14, 15lmcvg 16919 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  y )
1716ex 425 . . . . . . . . . . 11  |-  ( ph  ->  ( ( y  e.  J  /\  B  e.  y )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  y ) )
1810, 17anim12d 548 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( x  e.  J  /\  A  e.  x )  /\  (
y  e.  J  /\  B  e.  y )
)  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  x  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  y ) ) )
192rexanuz2 11763 . . . . . . . . . . 11  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y )  <->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  x  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  y ) )
20 nnz 9977 . . . . . . . . . . . . . 14  |-  ( j  e.  NN  ->  j  e.  ZZ )
21 uzid 10174 . . . . . . . . . . . . . 14  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
22 ne0i 3403 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( ZZ>= `  j )  =/=  (/) )
2320, 21, 223syl 20 . . . . . . . . . . . . 13  |-  ( j  e.  NN  ->  ( ZZ>=
`  j )  =/=  (/) )
24 r19.2z 3485 . . . . . . . . . . . . . 14  |-  ( ( ( ZZ>= `  j )  =/=  (/)  /\  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  x  /\  ( F `  k
)  e.  y ) )  ->  E. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  x  /\  ( F `  k
)  e.  y ) )
25 elin 3300 . . . . . . . . . . . . . . . 16  |-  ( ( F `  k )  e.  ( x  i^i  y )  <->  ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y ) )
26 n0i 3402 . . . . . . . . . . . . . . . 16  |-  ( ( F `  k )  e.  ( x  i^i  y )  ->  -.  ( x  i^i  y
)  =  (/) )
2725, 26sylbir 206 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  k
)  e.  x  /\  ( F `  k )  e.  y )  ->  -.  ( x  i^i  y
)  =  (/) )
2827rexlimivw 2634 . . . . . . . . . . . . . 14  |-  ( E. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y )  ->  -.  ( x  i^i  y
)  =  (/) )
2924, 28syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ZZ>= `  j )  =/=  (/)  /\  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  x  /\  ( F `  k
)  e.  y ) )  ->  -.  (
x  i^i  y )  =  (/) )
3023, 29sylan 459 . . . . . . . . . . . 12  |-  ( ( j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y ) )  ->  -.  ( x  i^i  y
)  =  (/) )
3130rexlimiva 2633 . . . . . . . . . . 11  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y )  ->  -.  ( x  i^i  y
)  =  (/) )
3219, 31sylbir 206 . . . . . . . . . 10  |-  ( ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  x  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  y )  ->  -.  ( x  i^i  y )  =  (/) )
3318, 32syl6 31 . . . . . . . . 9  |-  ( ph  ->  ( ( ( x  e.  J  /\  A  e.  x )  /\  (
y  e.  J  /\  B  e.  y )
)  ->  -.  (
x  i^i  y )  =  (/) ) )
341, 33syl5bi 210 . . . . . . . 8  |-  ( ph  ->  ( ( ( x  e.  J  /\  y  e.  J )  /\  ( A  e.  x  /\  B  e.  y )
)  ->  -.  (
x  i^i  y )  =  (/) ) )
3534expdimp 428 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( ( A  e.  x  /\  B  e.  y )  ->  -.  ( x  i^i  y
)  =  (/) ) )
36 imnan 413 . . . . . . 7  |-  ( ( ( A  e.  x  /\  B  e.  y
)  ->  -.  (
x  i^i  y )  =  (/) )  <->  -.  (
( A  e.  x  /\  B  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )
3735, 36sylib 190 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J ) )  ->  -.  ( ( A  e.  x  /\  B  e.  y )  /\  (
x  i^i  y )  =  (/) ) )
38 df-3an 941 . . . . . 6  |-  ( ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) )  <->  ( ( A  e.  x  /\  B  e.  y )  /\  ( x  i^i  y
)  =  (/) ) )
3937, 38sylnibr 298 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J ) )  ->  -.  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
4039anassrs 632 . . . 4  |-  ( ( ( ph  /\  x  e.  J )  /\  y  e.  J )  ->  -.  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
4140nrexdv 2617 . . 3  |-  ( (
ph  /\  x  e.  J )  ->  -.  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
4241nrexdv 2617 . 2  |-  ( ph  ->  -.  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y )  =  (/) ) )
43 lmmo.1 . . . 4  |-  ( ph  ->  J  e.  Haus )
44 haustop 16986 . . . . . . 7  |-  ( J  e.  Haus  ->  J  e. 
Top )
4543, 44syl 17 . . . . . 6  |-  ( ph  ->  J  e.  Top )
46 eqid 2256 . . . . . . 7  |-  U. J  =  U. J
4746toptopon 16598 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
4845, 47sylib 190 . . . . 5  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
49 lmcl 16952 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  F
( ~~> t `  J
) A )  ->  A  e.  U. J )
5048, 6, 49syl2anc 645 . . . 4  |-  ( ph  ->  A  e.  U. J
)
51 lmcl 16952 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  F
( ~~> t `  J
) B )  ->  B  e.  U. J )
5248, 13, 51syl2anc 645 . . . 4  |-  ( ph  ->  B  e.  U. J
)
5346hausnei 16983 . . . . 5  |-  ( ( J  e.  Haus  /\  ( A  e.  U. J  /\  B  e.  U. J  /\  A  =/=  B ) )  ->  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
54533exp2 1174 . . . 4  |-  ( J  e.  Haus  ->  ( A  e.  U. J  -> 
( B  e.  U. J  ->  ( A  =/= 
B  ->  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y )  =  (/) ) ) ) ) )
5543, 50, 52, 54syl3c 59 . . 3  |-  ( ph  ->  ( A  =/=  B  ->  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) ) )
5655necon1bd 2487 . 2  |-  ( ph  ->  ( -.  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y )  =  (/) )  ->  A  =  B ) )
5742, 56mpd 16 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   A.wral 2516   E.wrex 2517    i^i cin 3093   (/)c0 3397   U.cuni 3768   class class class wbr 3963   ` cfv 4638   1c1 8671   NNcn 9679   ZZcz 9956   ZZ>=cuz 10162   Topctop 16558  TopOnctopon 16559   ~~> tclm 16883   Hauscha 16963
This theorem is referenced by:  lmfun  17036  occllem  21807  nlelchi  22566  hmopidmchi  22656
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-er 6593  df-pm 6708  df-en 6797  df-dom 6798  df-sdom 6799  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-n 9680  df-z 9957  df-uz 10163  df-top 16563  df-topon 16566  df-lm 16886  df-haus 16970
  Copyright terms: Public domain W3C validator