MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmod0vs Structured version   Unicode version

Theorem lmod0vs 15985
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 22515 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmod0vs.v  |-  V  =  ( Base `  W
)
lmod0vs.f  |-  F  =  (Scalar `  W )
lmod0vs.s  |-  .x.  =  ( .s `  W )
lmod0vs.o  |-  O  =  ( 0g `  F
)
lmod0vs.z  |-  .0.  =  ( 0g `  W )
Assertion
Ref Expression
lmod0vs  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( O  .x.  X )  =  .0.  )

Proof of Theorem lmod0vs
StepHypRef Expression
1 simpl 445 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  W  e.  LMod )
2 lmod0vs.f . . . . . . . 8  |-  F  =  (Scalar `  W )
32lmodrng 15960 . . . . . . 7  |-  ( W  e.  LMod  ->  F  e. 
Ring )
43adantr 453 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  F  e.  Ring )
5 eqid 2438 . . . . . . 7  |-  ( Base `  F )  =  (
Base `  F )
6 lmod0vs.o . . . . . . 7  |-  O  =  ( 0g `  F
)
75, 6rng0cl 15687 . . . . . 6  |-  ( F  e.  Ring  ->  O  e.  ( Base `  F
) )
84, 7syl 16 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  O  e.  ( Base `  F
) )
9 simpr 449 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  V )
10 lmod0vs.v . . . . . 6  |-  V  =  ( Base `  W
)
11 eqid 2438 . . . . . 6  |-  ( +g  `  W )  =  ( +g  `  W )
12 lmod0vs.s . . . . . 6  |-  .x.  =  ( .s `  W )
13 eqid 2438 . . . . . 6  |-  ( +g  `  F )  =  ( +g  `  F )
1410, 11, 2, 12, 5, 13lmodvsdir 15976 . . . . 5  |-  ( ( W  e.  LMod  /\  ( O  e.  ( Base `  F )  /\  O  e.  ( Base `  F
)  /\  X  e.  V ) )  -> 
( ( O ( +g  `  F ) O )  .x.  X
)  =  ( ( O  .x.  X ) ( +g  `  W
) ( O  .x.  X ) ) )
151, 8, 8, 9, 14syl13anc 1187 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( O ( +g  `  F ) O ) 
.x.  X )  =  ( ( O  .x.  X ) ( +g  `  W ) ( O 
.x.  X ) ) )
16 rnggrp 15671 . . . . . . 7  |-  ( F  e.  Ring  ->  F  e. 
Grp )
174, 16syl 16 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  F  e.  Grp )
185, 13, 6grplid 14837 . . . . . 6  |-  ( ( F  e.  Grp  /\  O  e.  ( Base `  F ) )  -> 
( O ( +g  `  F ) O )  =  O )
1917, 8, 18syl2anc 644 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( O ( +g  `  F
) O )  =  O )
2019oveq1d 6098 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( O ( +g  `  F ) O ) 
.x.  X )  =  ( O  .x.  X
) )
2115, 20eqtr3d 2472 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( O  .x.  X
) ( +g  `  W
) ( O  .x.  X ) )  =  ( O  .x.  X
) )
2210, 2, 12, 5lmodvscl 15969 . . . . 5  |-  ( ( W  e.  LMod  /\  O  e.  ( Base `  F
)  /\  X  e.  V )  ->  ( O  .x.  X )  e.  V )
231, 8, 9, 22syl3anc 1185 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( O  .x.  X )  e.  V )
24 lmod0vs.z . . . . 5  |-  .0.  =  ( 0g `  W )
2510, 11, 24lmod0vid 15984 . . . 4  |-  ( ( W  e.  LMod  /\  ( O  .x.  X )  e.  V )  ->  (
( ( O  .x.  X ) ( +g  `  W ) ( O 
.x.  X ) )  =  ( O  .x.  X )  <->  .0.  =  ( O  .x.  X ) ) )
2623, 25syldan 458 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( O  .x.  X ) ( +g  `  W ) ( O 
.x.  X ) )  =  ( O  .x.  X )  <->  .0.  =  ( O  .x.  X ) ) )
2721, 26mpbid 203 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  .0.  =  ( O  .x.  X ) )
2827eqcomd 2443 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( O  .x.  X )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   ` cfv 5456  (class class class)co 6083   Basecbs 13471   +g cplusg 13531  Scalarcsca 13534   .scvsca 13535   0gc0g 13725   Grpcgrp 14687   Ringcrg 15662   LModclmod 15952
This theorem is referenced by:  lmodvs0  15986  lmodvneg1  15989  lvecvs0or  16182  lssvs0or  16184  lspsneleq  16189  lspdisj  16199  lspfixed  16202  lspexch  16203  lspsolvlem  16216  lspsolv  16217  mplcoe1  16530  mplbas2  16533  ply1scl0  16683  ply1coe  16686  clm0vs  19117  plypf1  20133  lcomfsup  26749  uvcresum  27221  frlmsslsp  27227  frlmup1  27229  frlmup2  27230  lshpkrlem1  29910  ldual0vs  29960  lclkrlem1  32306  lcd0vs  32415  baerlem3lem1  32507  baerlem5blem1  32509  hdmap14lem2a  32670  hdmap14lem4a  32674  hdmap14lem6  32676  hgmapval0  32695
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-iota 5420  df-fun 5458  df-fv 5464  df-ov 6086  df-riota 6551  df-0g 13729  df-mnd 14692  df-grp 14814  df-rng 15665  df-lmod 15954
  Copyright terms: Public domain W3C validator