MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvneg1 Unicode version

Theorem lmodvneg1 15669
Description: Minus 1 times a vector is the negative of the vector. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvneg1.v  |-  V  =  ( Base `  W
)
lmodvneg1.n  |-  N  =  ( inv g `  W )
lmodvneg1.f  |-  F  =  (Scalar `  W )
lmodvneg1.s  |-  .x.  =  ( .s `  W )
lmodvneg1.u  |-  .1.  =  ( 1r `  F )
lmodvneg1.m  |-  M  =  ( inv g `  F )
Assertion
Ref Expression
lmodvneg1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( M `  .1.  )  .x.  X )  =  ( N `  X
) )

Proof of Theorem lmodvneg1
StepHypRef Expression
1 simpl 443 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  W  e.  LMod )
2 lmodvneg1.f . . . . . . 7  |-  F  =  (Scalar `  W )
32lmodfgrp 15638 . . . . . 6  |-  ( W  e.  LMod  ->  F  e. 
Grp )
43adantr 451 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  F  e.  Grp )
5 eqid 2285 . . . . . . 7  |-  ( Base `  F )  =  (
Base `  F )
6 lmodvneg1.u . . . . . . 7  |-  .1.  =  ( 1r `  F )
72, 5, 6lmod1cl 15659 . . . . . 6  |-  ( W  e.  LMod  ->  .1.  e.  ( Base `  F )
)
87adantr 451 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  .1.  e.  ( Base `  F
) )
9 lmodvneg1.m . . . . . 6  |-  M  =  ( inv g `  F )
105, 9grpinvcl 14529 . . . . 5  |-  ( ( F  e.  Grp  /\  .1.  e.  ( Base `  F
) )  ->  ( M `  .1.  )  e.  ( Base `  F
) )
114, 8, 10syl2anc 642 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( M `  .1.  )  e.  ( Base `  F
) )
12 simpr 447 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  V )
13 lmodvneg1.v . . . . 5  |-  V  =  ( Base `  W
)
14 lmodvneg1.s . . . . 5  |-  .x.  =  ( .s `  W )
1513, 2, 14, 5lmodvscl 15646 . . . 4  |-  ( ( W  e.  LMod  /\  ( M `  .1.  )  e.  ( Base `  F
)  /\  X  e.  V )  ->  (
( M `  .1.  )  .x.  X )  e.  V )
161, 11, 12, 15syl3anc 1182 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( M `  .1.  )  .x.  X )  e.  V )
17 eqid 2285 . . . 4  |-  ( +g  `  W )  =  ( +g  `  W )
18 eqid 2285 . . . 4  |-  ( 0g
`  W )  =  ( 0g `  W
)
1913, 17, 18lmod0vrid 15663 . . 3  |-  ( ( W  e.  LMod  /\  (
( M `  .1.  )  .x.  X )  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( 0g `  W ) )  =  ( ( M `  .1.  )  .x.  X ) )
2016, 19syldan 456 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( 0g `  W ) )  =  ( ( M `  .1.  )  .x.  X ) )
21 lmodvneg1.n . . . . . 6  |-  N  =  ( inv g `  W )
2213, 21lmodvnegcl 15667 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  X )  e.  V )
2313, 17lmodass 15644 . . . . 5  |-  ( ( W  e.  LMod  /\  (
( ( M `  .1.  )  .x.  X )  e.  V  /\  X  e.  V  /\  ( N `  X )  e.  V ) )  -> 
( ( ( ( M `  .1.  )  .x.  X ) ( +g  `  W ) X ) ( +g  `  W
) ( N `  X ) )  =  ( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) ( X ( +g  `  W
) ( N `  X ) ) ) )
241, 16, 12, 22, 23syl13anc 1184 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) X ) ( +g  `  W
) ( N `  X ) )  =  ( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) ( X ( +g  `  W
) ( N `  X ) ) ) )
2513, 2, 14, 6lmodvs1 15660 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (  .1.  .x.  X )  =  X )
2625oveq2d 5876 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) (  .1.  .x.  X ) )  =  ( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) X ) )
27 eqid 2285 . . . . . . . . . 10  |-  ( +g  `  F )  =  ( +g  `  F )
28 eqid 2285 . . . . . . . . . 10  |-  ( 0g
`  F )  =  ( 0g `  F
)
295, 27, 28, 9grplinv 14530 . . . . . . . . 9  |-  ( ( F  e.  Grp  /\  .1.  e.  ( Base `  F
) )  ->  (
( M `  .1.  ) ( +g  `  F
)  .1.  )  =  ( 0g `  F
) )
304, 8, 29syl2anc 642 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( M `  .1.  ) ( +g  `  F
)  .1.  )  =  ( 0g `  F
) )
3130oveq1d 5875 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  ) ( +g  `  F
)  .1.  )  .x.  X )  =  ( ( 0g `  F
)  .x.  X )
)
3213, 17, 2, 14, 5, 27lmodvsdir 15654 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
( M `  .1.  )  e.  ( Base `  F )  /\  .1.  e.  ( Base `  F
)  /\  X  e.  V ) )  -> 
( ( ( M `
 .1.  ) ( +g  `  F )  .1.  )  .x.  X
)  =  ( ( ( M `  .1.  )  .x.  X ) ( +g  `  W ) (  .1.  .x.  X
) ) )
331, 11, 8, 12, 32syl13anc 1184 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  ) ( +g  `  F
)  .1.  )  .x.  X )  =  ( ( ( M `  .1.  )  .x.  X ) ( +g  `  W
) (  .1.  .x.  X ) ) )
3413, 2, 14, 28, 18lmod0vs 15665 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 0g `  F
)  .x.  X )  =  ( 0g `  W ) )
3531, 33, 343eqtr3d 2325 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) (  .1.  .x.  X ) )  =  ( 0g `  W
) )
3626, 35eqtr3d 2319 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) X )  =  ( 0g `  W
) )
3736oveq1d 5875 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) X ) ( +g  `  W
) ( N `  X ) )  =  ( ( 0g `  W ) ( +g  `  W ) ( N `
 X ) ) )
3824, 37eqtr3d 2319 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( X ( +g  `  W ) ( N `  X
) ) )  =  ( ( 0g `  W ) ( +g  `  W ) ( N `
 X ) ) )
3913, 17, 18, 21lmodvnegid 15668 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( X ( +g  `  W
) ( N `  X ) )  =  ( 0g `  W
) )
4039oveq2d 5876 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( X ( +g  `  W ) ( N `  X
) ) )  =  ( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) ( 0g
`  W ) ) )
4113, 17, 18lmod0vlid 15662 . . . 4  |-  ( ( W  e.  LMod  /\  ( N `  X )  e.  V )  ->  (
( 0g `  W
) ( +g  `  W
) ( N `  X ) )  =  ( N `  X
) )
4222, 41syldan 456 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 0g `  W
) ( +g  `  W
) ( N `  X ) )  =  ( N `  X
) )
4338, 40, 423eqtr3d 2325 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( 0g `  W ) )  =  ( N `  X
) )
4420, 43eqtr3d 2319 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( M `  .1.  )  .x.  X )  =  ( N `  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   ` cfv 5257  (class class class)co 5860   Basecbs 13150   +g cplusg 13210  Scalarcsca 13213   .scvsca 13214   0gc0g 13402   Grpcgrp 14364   inv gcminusg 14365   1rcur 15341   LModclmod 15629
This theorem is referenced by:  lmodvsnegOLD  15670  lmodvsneg  15671  lmodvsubval2  15682  lssvnegcl  15715  lspsnneg  15765  lmodvsinv  15795  lspsolvlem  15897  tlmtgp  17880  clmvneg1  18591  deg1invg  19494
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-riota 6306  df-recs 6390  df-rdg 6425  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-nn 9749  df-2 9806  df-ndx 13153  df-slot 13154  df-base 13155  df-sets 13156  df-plusg 13223  df-0g 13406  df-mnd 14369  df-grp 14491  df-minusg 14492  df-mgp 15328  df-rng 15342  df-ur 15344  df-lmod 15631
  Copyright terms: Public domain W3C validator