MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvneg1 Structured version   Unicode version

Theorem lmodvneg1 15979
Description: Minus 1 times a vector is the negative of the vector. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvneg1.v  |-  V  =  ( Base `  W
)
lmodvneg1.n  |-  N  =  ( inv g `  W )
lmodvneg1.f  |-  F  =  (Scalar `  W )
lmodvneg1.s  |-  .x.  =  ( .s `  W )
lmodvneg1.u  |-  .1.  =  ( 1r `  F )
lmodvneg1.m  |-  M  =  ( inv g `  F )
Assertion
Ref Expression
lmodvneg1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( M `  .1.  )  .x.  X )  =  ( N `  X
) )

Proof of Theorem lmodvneg1
StepHypRef Expression
1 simpl 444 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  W  e.  LMod )
2 lmodvneg1.f . . . . . . 7  |-  F  =  (Scalar `  W )
32lmodfgrp 15951 . . . . . 6  |-  ( W  e.  LMod  ->  F  e. 
Grp )
43adantr 452 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  F  e.  Grp )
5 eqid 2435 . . . . . . 7  |-  ( Base `  F )  =  (
Base `  F )
6 lmodvneg1.u . . . . . . 7  |-  .1.  =  ( 1r `  F )
72, 5, 6lmod1cl 15969 . . . . . 6  |-  ( W  e.  LMod  ->  .1.  e.  ( Base `  F )
)
87adantr 452 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  .1.  e.  ( Base `  F
) )
9 lmodvneg1.m . . . . . 6  |-  M  =  ( inv g `  F )
105, 9grpinvcl 14842 . . . . 5  |-  ( ( F  e.  Grp  /\  .1.  e.  ( Base `  F
) )  ->  ( M `  .1.  )  e.  ( Base `  F
) )
114, 8, 10syl2anc 643 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( M `  .1.  )  e.  ( Base `  F
) )
12 simpr 448 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  V )
13 lmodvneg1.v . . . . 5  |-  V  =  ( Base `  W
)
14 lmodvneg1.s . . . . 5  |-  .x.  =  ( .s `  W )
1513, 2, 14, 5lmodvscl 15959 . . . 4  |-  ( ( W  e.  LMod  /\  ( M `  .1.  )  e.  ( Base `  F
)  /\  X  e.  V )  ->  (
( M `  .1.  )  .x.  X )  e.  V )
161, 11, 12, 15syl3anc 1184 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( M `  .1.  )  .x.  X )  e.  V )
17 eqid 2435 . . . 4  |-  ( +g  `  W )  =  ( +g  `  W )
18 eqid 2435 . . . 4  |-  ( 0g
`  W )  =  ( 0g `  W
)
1913, 17, 18lmod0vrid 15973 . . 3  |-  ( ( W  e.  LMod  /\  (
( M `  .1.  )  .x.  X )  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( 0g `  W ) )  =  ( ( M `  .1.  )  .x.  X ) )
2016, 19syldan 457 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( 0g `  W ) )  =  ( ( M `  .1.  )  .x.  X ) )
21 lmodvneg1.n . . . . . 6  |-  N  =  ( inv g `  W )
2213, 21lmodvnegcl 15977 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  X )  e.  V )
2313, 17lmodass 15957 . . . . 5  |-  ( ( W  e.  LMod  /\  (
( ( M `  .1.  )  .x.  X )  e.  V  /\  X  e.  V  /\  ( N `  X )  e.  V ) )  -> 
( ( ( ( M `  .1.  )  .x.  X ) ( +g  `  W ) X ) ( +g  `  W
) ( N `  X ) )  =  ( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) ( X ( +g  `  W
) ( N `  X ) ) ) )
241, 16, 12, 22, 23syl13anc 1186 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) X ) ( +g  `  W
) ( N `  X ) )  =  ( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) ( X ( +g  `  W
) ( N `  X ) ) ) )
2513, 2, 14, 6lmodvs1 15970 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (  .1.  .x.  X )  =  X )
2625oveq2d 6089 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) (  .1.  .x.  X ) )  =  ( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) X ) )
27 eqid 2435 . . . . . . . . . 10  |-  ( +g  `  F )  =  ( +g  `  F )
28 eqid 2435 . . . . . . . . . 10  |-  ( 0g
`  F )  =  ( 0g `  F
)
295, 27, 28, 9grplinv 14843 . . . . . . . . 9  |-  ( ( F  e.  Grp  /\  .1.  e.  ( Base `  F
) )  ->  (
( M `  .1.  ) ( +g  `  F
)  .1.  )  =  ( 0g `  F
) )
304, 8, 29syl2anc 643 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( M `  .1.  ) ( +g  `  F
)  .1.  )  =  ( 0g `  F
) )
3130oveq1d 6088 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  ) ( +g  `  F
)  .1.  )  .x.  X )  =  ( ( 0g `  F
)  .x.  X )
)
3213, 17, 2, 14, 5, 27lmodvsdir 15966 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
( M `  .1.  )  e.  ( Base `  F )  /\  .1.  e.  ( Base `  F
)  /\  X  e.  V ) )  -> 
( ( ( M `
 .1.  ) ( +g  `  F )  .1.  )  .x.  X
)  =  ( ( ( M `  .1.  )  .x.  X ) ( +g  `  W ) (  .1.  .x.  X
) ) )
331, 11, 8, 12, 32syl13anc 1186 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  ) ( +g  `  F
)  .1.  )  .x.  X )  =  ( ( ( M `  .1.  )  .x.  X ) ( +g  `  W
) (  .1.  .x.  X ) ) )
3413, 2, 14, 28, 18lmod0vs 15975 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 0g `  F
)  .x.  X )  =  ( 0g `  W ) )
3531, 33, 343eqtr3d 2475 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) (  .1.  .x.  X ) )  =  ( 0g `  W
) )
3626, 35eqtr3d 2469 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) X )  =  ( 0g `  W
) )
3736oveq1d 6088 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) X ) ( +g  `  W
) ( N `  X ) )  =  ( ( 0g `  W ) ( +g  `  W ) ( N `
 X ) ) )
3824, 37eqtr3d 2469 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( X ( +g  `  W ) ( N `  X
) ) )  =  ( ( 0g `  W ) ( +g  `  W ) ( N `
 X ) ) )
3913, 17, 18, 21lmodvnegid 15978 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( X ( +g  `  W
) ( N `  X ) )  =  ( 0g `  W
) )
4039oveq2d 6089 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( X ( +g  `  W ) ( N `  X
) ) )  =  ( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) ( 0g
`  W ) ) )
4113, 17, 18lmod0vlid 15972 . . . 4  |-  ( ( W  e.  LMod  /\  ( N `  X )  e.  V )  ->  (
( 0g `  W
) ( +g  `  W
) ( N `  X ) )  =  ( N `  X
) )
4222, 41syldan 457 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 0g `  W
) ( +g  `  W
) ( N `  X ) )  =  ( N `  X
) )
4338, 40, 423eqtr3d 2475 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( 0g `  W ) )  =  ( N `  X
) )
4420, 43eqtr3d 2469 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( M `  .1.  )  .x.  X )  =  ( N `  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   ` cfv 5446  (class class class)co 6073   Basecbs 13461   +g cplusg 13521  Scalarcsca 13524   .scvsca 13525   0gc0g 13715   Grpcgrp 14677   inv gcminusg 14678   1rcur 15654   LModclmod 15942
This theorem is referenced by:  lmodvsneg  15980  lmodvsubval2  15991  lssvnegcl  16024  lspsnneg  16074  lmodvsinv  16104  lspsolvlem  16206  tlmtgp  18217  clmvneg1  19108  deg1invg  20021
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-plusg 13534  df-0g 13719  df-mnd 14682  df-grp 14804  df-minusg 14805  df-mgp 15641  df-rng 15655  df-ur 15657  df-lmod 15944
  Copyright terms: Public domain W3C validator