HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfn0i Unicode version

Theorem lnfn0i 23502
Description: The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnfnl.1  |-  T  e. 
LinFn
Assertion
Ref Expression
lnfn0i  |-  ( T `
 0h )  =  0

Proof of Theorem lnfn0i
StepHypRef Expression
1 ax-hv0cl 22463 . . . 4  |-  0h  e.  ~H
2 lnfnl.1 . . . . . 6  |-  T  e. 
LinFn
32lnfnfi 23501 . . . . 5  |-  T : ~H
--> CC
43ffvelrni 5832 . . . 4  |-  ( 0h  e.  ~H  ->  ( T `  0h )  e.  CC )
51, 4ax-mp 8 . . 3  |-  ( T `
 0h )  e.  CC
6 pncan 9271 . . 3  |-  ( ( ( T `  0h )  e.  CC  /\  ( T `  0h )  e.  CC )  ->  (
( ( T `  0h )  +  ( T `  0h )
)  -  ( T `
 0h ) )  =  ( T `  0h ) )
75, 5, 6mp2an 654 . 2  |-  ( ( ( T `  0h )  +  ( T `  0h ) )  -  ( T `  0h )
)  =  ( T `
 0h )
8 ax-1cn 9008 . . . . . . 7  |-  1  e.  CC
92lnfnli 23500 . . . . . . 7  |-  ( ( 1  e.  CC  /\  0h  e.  ~H  /\  0h  e.  ~H )  ->  ( T `  ( (
1  .h  0h )  +h  0h ) )  =  ( ( 1  x.  ( T `  0h ) )  +  ( T `  0h )
) )
108, 1, 1, 9mp3an 1279 . . . . . 6  |-  ( T `
 ( ( 1  .h  0h )  +h 
0h ) )  =  ( ( 1  x.  ( T `  0h ) )  +  ( T `  0h )
)
118, 1hvmulcli 22474 . . . . . . . . 9  |-  ( 1  .h  0h )  e. 
~H
12 ax-hvaddid 22464 . . . . . . . . 9  |-  ( ( 1  .h  0h )  e.  ~H  ->  ( (
1  .h  0h )  +h  0h )  =  ( 1  .h  0h )
)
1311, 12ax-mp 8 . . . . . . . 8  |-  ( ( 1  .h  0h )  +h  0h )  =  ( 1  .h  0h )
14 ax-hvmulid 22466 . . . . . . . . 9  |-  ( 0h  e.  ~H  ->  (
1  .h  0h )  =  0h )
151, 14ax-mp 8 . . . . . . . 8  |-  ( 1  .h  0h )  =  0h
1613, 15eqtri 2428 . . . . . . 7  |-  ( ( 1  .h  0h )  +h  0h )  =  0h
1716fveq2i 5694 . . . . . 6  |-  ( T `
 ( ( 1  .h  0h )  +h 
0h ) )  =  ( T `  0h )
1810, 17eqtr3i 2430 . . . . 5  |-  ( ( 1  x.  ( T `
 0h ) )  +  ( T `  0h ) )  =  ( T `  0h )
195mulid2i 9053 . . . . . 6  |-  ( 1  x.  ( T `  0h ) )  =  ( T `  0h )
2019oveq1i 6054 . . . . 5  |-  ( ( 1  x.  ( T `
 0h ) )  +  ( T `  0h ) )  =  ( ( T `  0h )  +  ( T `  0h ) )
2118, 20eqtr3i 2430 . . . 4  |-  ( T `
 0h )  =  ( ( T `  0h )  +  ( T `  0h )
)
2221oveq1i 6054 . . 3  |-  ( ( T `  0h )  -  ( T `  0h ) )  =  ( ( ( T `  0h )  +  ( T `  0h )
)  -  ( T `
 0h ) )
235subidi 9331 . . 3  |-  ( ( T `  0h )  -  ( T `  0h ) )  =  0
2422, 23eqtr3i 2430 . 2  |-  ( ( ( T `  0h )  +  ( T `  0h ) )  -  ( T `  0h )
)  =  0
257, 24eqtr3i 2430 1  |-  ( T `
 0h )  =  0
Colors of variables: wff set class
Syntax hints:    = wceq 1649    e. wcel 1721   ` cfv 5417  (class class class)co 6044   CCcc 8948   0cc0 8950   1c1 8951    + caddc 8953    x. cmul 8955    - cmin 9251   ~Hchil 22379    +h cva 22380    .h csm 22381   0hc0v 22384   LinFnclf 22414
This theorem is referenced by:  lnfnmuli  23504  lnfn0  23507  nmbdfnlbi  23509  nmcfnexi  23511  nmcfnlbi  23512  nlelshi  23520
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-hilex 22459  ax-hv0cl 22463  ax-hvaddid 22464  ax-hfvmul 22465  ax-hvmulid 22466
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-po 4467  df-so 4468  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-riota 6512  df-er 6868  df-map 6983  df-en 7073  df-dom 7074  df-sdom 7075  df-pnf 9082  df-mnf 9083  df-ltxr 9085  df-sub 9253  df-lnfn 23308
  Copyright terms: Public domain W3C validator