HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfn0i Unicode version

Theorem lnfn0i 22618
Description: The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnfnl.1  |-  T  e. 
LinFn
Assertion
Ref Expression
lnfn0i  |-  ( T `
 0h )  =  0

Proof of Theorem lnfn0i
StepHypRef Expression
1 ax-hv0cl 21579 . . . 4  |-  0h  e.  ~H
2 lnfnl.1 . . . . . 6  |-  T  e. 
LinFn
32lnfnfi 22617 . . . . 5  |-  T : ~H
--> CC
43ffvelrni 5626 . . . 4  |-  ( 0h  e.  ~H  ->  ( T `  0h )  e.  CC )
51, 4ax-mp 8 . . 3  |-  ( T `
 0h )  e.  CC
6 pncan 9053 . . 3  |-  ( ( ( T `  0h )  e.  CC  /\  ( T `  0h )  e.  CC )  ->  (
( ( T `  0h )  +  ( T `  0h )
)  -  ( T `
 0h ) )  =  ( T `  0h ) )
75, 5, 6mp2an 653 . 2  |-  ( ( ( T `  0h )  +  ( T `  0h ) )  -  ( T `  0h )
)  =  ( T `
 0h )
8 ax-1cn 8791 . . . . . . 7  |-  1  e.  CC
92lnfnli 22616 . . . . . . 7  |-  ( ( 1  e.  CC  /\  0h  e.  ~H  /\  0h  e.  ~H )  ->  ( T `  ( (
1  .h  0h )  +h  0h ) )  =  ( ( 1  x.  ( T `  0h ) )  +  ( T `  0h )
) )
108, 1, 1, 9mp3an 1277 . . . . . 6  |-  ( T `
 ( ( 1  .h  0h )  +h 
0h ) )  =  ( ( 1  x.  ( T `  0h ) )  +  ( T `  0h )
)
118, 1hvmulcli 21590 . . . . . . . . 9  |-  ( 1  .h  0h )  e. 
~H
12 ax-hvaddid 21580 . . . . . . . . 9  |-  ( ( 1  .h  0h )  e.  ~H  ->  ( (
1  .h  0h )  +h  0h )  =  ( 1  .h  0h )
)
1311, 12ax-mp 8 . . . . . . . 8  |-  ( ( 1  .h  0h )  +h  0h )  =  ( 1  .h  0h )
14 ax-hvmulid 21582 . . . . . . . . 9  |-  ( 0h  e.  ~H  ->  (
1  .h  0h )  =  0h )
151, 14ax-mp 8 . . . . . . . 8  |-  ( 1  .h  0h )  =  0h
1613, 15eqtri 2304 . . . . . . 7  |-  ( ( 1  .h  0h )  +h  0h )  =  0h
1716fveq2i 5489 . . . . . 6  |-  ( T `
 ( ( 1  .h  0h )  +h 
0h ) )  =  ( T `  0h )
1810, 17eqtr3i 2306 . . . . 5  |-  ( ( 1  x.  ( T `
 0h ) )  +  ( T `  0h ) )  =  ( T `  0h )
195mulid2i 8836 . . . . . 6  |-  ( 1  x.  ( T `  0h ) )  =  ( T `  0h )
2019oveq1i 5830 . . . . 5  |-  ( ( 1  x.  ( T `
 0h ) )  +  ( T `  0h ) )  =  ( ( T `  0h )  +  ( T `  0h ) )
2118, 20eqtr3i 2306 . . . 4  |-  ( T `
 0h )  =  ( ( T `  0h )  +  ( T `  0h )
)
2221oveq1i 5830 . . 3  |-  ( ( T `  0h )  -  ( T `  0h ) )  =  ( ( ( T `  0h )  +  ( T `  0h )
)  -  ( T `
 0h ) )
235subidi 9113 . . 3  |-  ( ( T `  0h )  -  ( T `  0h ) )  =  0
2422, 23eqtr3i 2306 . 2  |-  ( ( ( T `  0h )  +  ( T `  0h ) )  -  ( T `  0h )
)  =  0
257, 24eqtr3i 2306 1  |-  ( T `
 0h )  =  0
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1685   ` cfv 5221  (class class class)co 5820   CCcc 8731   0cc0 8733   1c1 8734    + caddc 8736    x. cmul 8738    - cmin 9033   ~Hchil 21495    +h cva 21496    .h csm 21497   0hc0v 21500   LinFnclf 21530
This theorem is referenced by:  lnfnmuli  22620  lnfn0  22623  nmbdfnlbi  22625  nmcfnexi  22627  nmcfnlbi  22628  nlelshi  22636
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-hilex 21575  ax-hv0cl 21579  ax-hvaddid 21580  ax-hfvmul 21581  ax-hvmulid 21582
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-po 4313  df-so 4314  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-iota 6253  df-riota 6300  df-er 6656  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-ltxr 8868  df-sub 9035  df-lnfn 22424
  Copyright terms: Public domain W3C validator