HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfncon Unicode version

Theorem lnfncon 23070
Description: A condition equivalent to " T is continuous" when  T is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnfncon  |-  ( T  e.  LinFn  ->  ( T  e.  ConFn 
<->  E. x  e.  RR  A. y  e.  ~H  ( abs `  ( T `  y ) )  <_ 
( x  x.  ( normh `  y ) ) ) )
Distinct variable group:    x, y, T

Proof of Theorem lnfncon
StepHypRef Expression
1 eleq1 2426 . . 3  |-  ( T  =  if ( T  e.  LinFn ,  T , 
( ~H  X.  {
0 } ) )  ->  ( T  e. 
ConFn 
<->  if ( T  e. 
LinFn ,  T , 
( ~H  X.  {
0 } ) )  e.  ConFn ) )
2 fveq1 5631 . . . . . 6  |-  ( T  =  if ( T  e.  LinFn ,  T , 
( ~H  X.  {
0 } ) )  ->  ( T `  y )  =  ( if ( T  e. 
LinFn ,  T , 
( ~H  X.  {
0 } ) ) `
 y ) )
32fveq2d 5636 . . . . 5  |-  ( T  =  if ( T  e.  LinFn ,  T , 
( ~H  X.  {
0 } ) )  ->  ( abs `  ( T `  y )
)  =  ( abs `  ( if ( T  e.  LinFn ,  T , 
( ~H  X.  {
0 } ) ) `
 y ) ) )
43breq1d 4135 . . . 4  |-  ( T  =  if ( T  e.  LinFn ,  T , 
( ~H  X.  {
0 } ) )  ->  ( ( abs `  ( T `  y
) )  <_  (
x  x.  ( normh `  y ) )  <->  ( abs `  ( if ( T  e.  LinFn ,  T , 
( ~H  X.  {
0 } ) ) `
 y ) )  <_  ( x  x.  ( normh `  y )
) ) )
54rexralbidv 2672 . . 3  |-  ( T  =  if ( T  e.  LinFn ,  T , 
( ~H  X.  {
0 } ) )  ->  ( E. x  e.  RR  A. y  e. 
~H  ( abs `  ( T `  y )
)  <_  ( x  x.  ( normh `  y )
)  <->  E. x  e.  RR  A. y  e.  ~H  ( abs `  ( if ( T  e.  LinFn ,  T ,  ( ~H  X.  { 0 } ) ) `  y ) )  <_  ( x  x.  ( normh `  y )
) ) )
61, 5bibi12d 312 . 2  |-  ( T  =  if ( T  e.  LinFn ,  T , 
( ~H  X.  {
0 } ) )  ->  ( ( T  e.  ConFn 
<->  E. x  e.  RR  A. y  e.  ~H  ( abs `  ( T `  y ) )  <_ 
( x  x.  ( normh `  y ) ) )  <->  ( if ( T  e.  LinFn ,  T ,  ( ~H  X.  { 0 } ) )  e.  ConFn  <->  E. x  e.  RR  A. y  e. 
~H  ( abs `  ( if ( T  e.  LinFn ,  T ,  ( ~H 
X.  { 0 } ) ) `  y
) )  <_  (
x  x.  ( normh `  y ) ) ) ) )
7 0lnfn 22999 . . . 4  |-  ( ~H 
X.  { 0 } )  e.  LinFn
87elimel 3706 . . 3  |-  if ( T  e.  LinFn ,  T ,  ( ~H  X.  { 0 } ) )  e.  LinFn
98lnfnconi 23069 . 2  |-  ( if ( T  e.  LinFn ,  T ,  ( ~H 
X.  { 0 } ) )  e.  ConFn  <->  E. x  e.  RR  A. y  e.  ~H  ( abs `  ( if ( T  e.  LinFn ,  T ,  ( ~H 
X.  { 0 } ) ) `  y
) )  <_  (
x  x.  ( normh `  y ) ) )
106, 9dedth 3695 1  |-  ( T  e.  LinFn  ->  ( T  e.  ConFn 
<->  E. x  e.  RR  A. y  e.  ~H  ( abs `  ( T `  y ) )  <_ 
( x  x.  ( normh `  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1647    e. wcel 1715   A.wral 2628   E.wrex 2629   ifcif 3654   {csn 3729   class class class wbr 4125    X. cxp 4790   ` cfv 5358  (class class class)co 5981   RRcr 8883   0cc0 8884    x. cmul 8889    <_ cle 9015   abscabs 11926   ~Hchil 21933   normhcno 21937   ConFnccnfn 21967   LinFnclf 21968
This theorem is referenced by:  lnfncnbd  23071  riesz1  23079  cnlnadjlem2  23082
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962  ax-hilex 22013  ax-hfvadd 22014  ax-hv0cl 22017  ax-hvaddid 22018  ax-hfvmul 22019  ax-hvmulid 22020  ax-hvmulass 22021  ax-hvmul0 22024  ax-hfi 22092  ax-his1 22095  ax-his3 22097  ax-his4 22098
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-er 6802  df-map 6917  df-en 7007  df-dom 7008  df-sdom 7009  df-sup 7341  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-div 9571  df-nn 9894  df-2 9951  df-3 9952  df-n0 10115  df-z 10176  df-uz 10382  df-rp 10506  df-seq 11211  df-exp 11270  df-cj 11791  df-re 11792  df-im 11793  df-sqr 11927  df-abs 11928  df-hnorm 21982  df-hvsub 21985  df-nmfn 22859  df-cnfn 22861  df-lnfn 22862
  Copyright terms: Public domain W3C validator