Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmlssfg Unicode version

Theorem lnmlssfg 27046
Description: A submodule of Noetherian module is finitely generated. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lnmlssfg.s  |-  S  =  ( LSubSp `  M )
lnmlssfg.r  |-  R  =  ( Ms  U )
Assertion
Ref Expression
lnmlssfg  |-  ( ( M  e. LNoeM  /\  U  e.  S )  ->  R  e. LFinGen )

Proof of Theorem lnmlssfg
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 lnmlssfg.s . . . 4  |-  S  =  ( LSubSp `  M )
21islnm 27043 . . 3  |-  ( M  e. LNoeM 
<->  ( M  e.  LMod  /\ 
A. a  e.  S  ( Ms  a )  e. LFinGen ) )
32simprbi 451 . 2  |-  ( M  e. LNoeM  ->  A. a  e.  S  ( Ms  a )  e. LFinGen )
4 oveq2 6048 . . . . 5  |-  ( a  =  U  ->  ( Ms  a )  =  ( Ms  U ) )
5 lnmlssfg.r . . . . 5  |-  R  =  ( Ms  U )
64, 5syl6eqr 2454 . . . 4  |-  ( a  =  U  ->  ( Ms  a )  =  R )
76eleq1d 2470 . . 3  |-  ( a  =  U  ->  (
( Ms  a )  e. LFinGen  <->  R  e. LFinGen ) )
87rspcv 3008 . 2  |-  ( U  e.  S  ->  ( A. a  e.  S  ( Ms  a )  e. LFinGen  ->  R  e. LFinGen ) )
93, 8mpan9 456 1  |-  ( ( M  e. LNoeM  /\  U  e.  S )  ->  R  e. LFinGen )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   ` cfv 5413  (class class class)co 6040   ↾s cress 13425   LModclmod 15905   LSubSpclss 15963  LFinGenclfig 27033  LNoeMclnm 27041
This theorem is referenced by:  lnmlsslnm  27047  lnmfg  27048  lnmepi  27051  lmhmlnmsplit  27053  lnrfgtr  27192
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-iota 5377  df-fv 5421  df-ov 6043  df-lnm 27042
  Copyright terms: Public domain W3C validator