MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnof Structured version   Unicode version

Theorem lnof 22248
Description: A linear operator is a mapping. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnof.1  |-  X  =  ( BaseSet `  U )
lnof.2  |-  Y  =  ( BaseSet `  W )
lnof.7  |-  L  =  ( U  LnOp  W
)
Assertion
Ref Expression
lnof  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> Y )

Proof of Theorem lnof
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnof.1 . . . 4  |-  X  =  ( BaseSet `  U )
2 lnof.2 . . . 4  |-  Y  =  ( BaseSet `  W )
3 eqid 2435 . . . 4  |-  ( +v
`  U )  =  ( +v `  U
)
4 eqid 2435 . . . 4  |-  ( +v
`  W )  =  ( +v `  W
)
5 eqid 2435 . . . 4  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
6 eqid 2435 . . . 4  |-  ( .s
OLD `  W )  =  ( .s OLD `  W )
7 lnof.7 . . . 4  |-  L  =  ( U  LnOp  W
)
81, 2, 3, 4, 5, 6, 7islno 22246 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( T  e.  L  <->  ( T : X --> Y  /\  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( T `  ( ( x ( .s OLD `  U
) y ) ( +v `  U ) z ) )  =  ( ( x ( .s OLD `  W
) ( T `  y ) ) ( +v `  W ) ( T `  z
) ) ) ) )
98simprbda 607 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  /\  T  e.  L )  ->  T : X --> Y )
1093impa 1148 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   -->wf 5442   ` cfv 5446  (class class class)co 6073   CCcc 8980   NrmCVeccnv 22055   +vcpv 22056   BaseSetcba 22057   .s
OLDcns 22058    LnOp clno 22233
This theorem is referenced by:  lno0  22249  lnocoi  22250  lnoadd  22251  lnosub  22252  lnomul  22253  isblo2  22276  blof  22278  nmlno0lem  22286  nmlnoubi  22289  nmlnogt0  22290  lnon0  22291  isblo3i  22294  blocnilem  22297  blocni  22298  htthlem  22412
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-map 7012  df-lno 22237
  Copyright terms: Public domain W3C validator