HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophm Unicode version

Theorem lnophm 22601
Description: A linear operator is Hermitian if  x  .ih  ( T `  x ) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnophm  |-  ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR )  ->  T  e.  HrmOp )
Distinct variable group:    x, T

Proof of Theorem lnophm
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq1 2345 . 2  |-  ( T  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( T  e.  HrmOp 
<->  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  e.  HrmOp ) )
2 eleq1 2345 . . . . . 6  |-  ( T  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( T  e.  LinOp 
<->  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  e.  LinOp ) )
3 id 19 . . . . . . . . . 10  |-  ( x  =  y  ->  x  =  y )
4 fveq2 5527 . . . . . . . . . 10  |-  ( x  =  y  ->  ( T `  x )  =  ( T `  y ) )
53, 4oveq12d 5878 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  .ih  ( T `  x ) )  =  ( y  .ih  ( T `  y )
) )
65eleq1d 2351 . . . . . . . 8  |-  ( x  =  y  ->  (
( x  .ih  ( T `  x )
)  e.  RR  <->  ( y  .ih  ( T `  y
) )  e.  RR ) )
76cbvralv 2766 . . . . . . 7  |-  ( A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR  <->  A. y  e.  ~H  ( y  .ih  ( T `  y )
)  e.  RR )
8 fveq1 5526 . . . . . . . . . 10  |-  ( T  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( T `  y )  =  ( if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)
98oveq2d 5876 . . . . . . . . 9  |-  ( T  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( y  .ih  ( T `  y
) )  =  ( y  .ih  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
) )
109eleq1d 2351 . . . . . . . 8  |-  ( T  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( (
y  .ih  ( T `  y ) )  e.  RR  <->  ( y  .ih  ( if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)  e.  RR ) )
1110ralbidv 2565 . . . . . . 7  |-  ( T  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( A. y  e.  ~H  (
y  .ih  ( T `  y ) )  e.  RR  <->  A. y  e.  ~H  ( y  .ih  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)  e.  RR ) )
127, 11syl5bb 248 . . . . . 6  |-  ( T  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR  <->  A. y  e.  ~H  ( y  .ih  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)  e.  RR ) )
132, 12anbi12d 691 . . . . 5  |-  ( T  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR )  <->  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  e.  LinOp  /\  A. y  e.  ~H  (
y  .ih  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)  e.  RR ) ) )
14 eleq1 2345 . . . . . 6  |-  ( (  _I  |`  ~H )  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( (  _I  |`  ~H )  e. 
LinOp 
<->  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  e.  LinOp ) )
15 fveq1 5526 . . . . . . . . 9  |-  ( (  _I  |`  ~H )  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( (  _I  |`  ~H ) `  y )  =  ( if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)
1615oveq2d 5876 . . . . . . . 8  |-  ( (  _I  |`  ~H )  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( y  .ih  ( (  _I  |`  ~H ) `  y ) )  =  ( y  .ih  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
) )
1716eleq1d 2351 . . . . . . 7  |-  ( (  _I  |`  ~H )  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( (
y  .ih  ( (  _I  |`  ~H ) `  y ) )  e.  RR  <->  ( y  .ih  ( if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)  e.  RR ) )
1817ralbidv 2565 . . . . . 6  |-  ( (  _I  |`  ~H )  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( A. y  e.  ~H  (
y  .ih  ( (  _I  |`  ~H ) `  y ) )  e.  RR  <->  A. y  e.  ~H  ( y  .ih  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)  e.  RR ) )
1914, 18anbi12d 691 . . . . 5  |-  ( (  _I  |`  ~H )  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( (
(  _I  |`  ~H )  e.  LinOp  /\  A. y  e.  ~H  ( y  .ih  ( (  _I  |`  ~H ) `  y ) )  e.  RR )  <->  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  e.  LinOp  /\  A. y  e.  ~H  (
y  .ih  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)  e.  RR ) ) )
20 idlnop 22574 . . . . . 6  |-  (  _I  |`  ~H )  e.  LinOp
21 fvresi 5713 . . . . . . . . 9  |-  ( y  e.  ~H  ->  (
(  _I  |`  ~H ) `  y )  =  y )
2221oveq2d 5876 . . . . . . . 8  |-  ( y  e.  ~H  ->  (
y  .ih  ( (  _I  |`  ~H ) `  y ) )  =  ( y  .ih  y
) )
23 hiidrcl 21676 . . . . . . . 8  |-  ( y  e.  ~H  ->  (
y  .ih  y )  e.  RR )
2422, 23eqeltrd 2359 . . . . . . 7  |-  ( y  e.  ~H  ->  (
y  .ih  ( (  _I  |`  ~H ) `  y ) )  e.  RR )
2524rgen 2610 . . . . . 6  |-  A. y  e.  ~H  ( y  .ih  ( (  _I  |`  ~H ) `  y ) )  e.  RR
2620, 25pm3.2i 441 . . . . 5  |-  ( (  _I  |`  ~H )  e.  LinOp  /\  A. y  e.  ~H  ( y  .ih  ( (  _I  |`  ~H ) `  y ) )  e.  RR )
2713, 19, 26elimhyp 3615 . . . 4  |-  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  e.  LinOp  /\  A. y  e.  ~H  (
y  .ih  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)  e.  RR )
2827simpli 444 . . 3  |-  if ( ( T  e.  LinOp  /\ 
A. x  e.  ~H  ( x  .ih  ( T `
 x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H ) )  e. 
LinOp
2927simpri 448 . . 3  |-  A. y  e.  ~H  ( y  .ih  ( if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)  e.  RR
3028, 29lnophmi 22600 . 2  |-  if ( ( T  e.  LinOp  /\ 
A. x  e.  ~H  ( x  .ih  ( T `
 x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H ) )  e. 
HrmOp
311, 30dedth 3608 1  |-  ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR )  ->  T  e.  HrmOp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   A.wral 2545   ifcif 3567    _I cid 4306    |` cres 4693   ` cfv 5257  (class class class)co 5860   RRcr 8738   ~Hchil 21501    .ih csp 21504   LinOpclo 21529   HrmOpcho 21532
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-hilex 21581  ax-hfvadd 21582  ax-hvcom 21583  ax-hvass 21584  ax-hv0cl 21585  ax-hvaddid 21586  ax-hfvmul 21587  ax-hvmulid 21588  ax-hvmulass 21589  ax-hvdistr1 21590  ax-hvdistr2 21591  ax-hvmul0 21592  ax-hfi 21660  ax-his1 21663  ax-his2 21664  ax-his3 21665  ax-his4 21666
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4316  df-so 4317  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-riota 6306  df-er 6662  df-map 6776  df-en 6866  df-dom 6867  df-sdom 6868  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-2 9806  df-3 9807  df-4 9808  df-cj 11586  df-re 11587  df-im 11588  df-hvsub 21553  df-lnop 22423  df-unop 22425  df-hmop 22426
  Copyright terms: Public domain W3C validator