HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopunii Unicode version

Theorem lnopunii 22588
Description: If a linear operator (whose range is  ~H) is idempotent in the norm, the operator is unitary. Similar to theorem in [AkhiezerGlazman] p. 73. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnopuni.1  |-  T  e. 
LinOp
lnopuni.2  |-  T : ~H -onto-> ~H
lnopuni.3  |-  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x )
Assertion
Ref Expression
lnopunii  |-  T  e. 
UniOp
Distinct variable group:    x, T

Proof of Theorem lnopunii
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 lnopuni.2 . 2  |-  T : ~H -onto-> ~H
2 fveq2 5486 . . . . . 6  |-  ( x  =  if ( x  e.  ~H ,  x ,  0h )  ->  ( T `  x )  =  ( T `  if ( x  e.  ~H ,  x ,  0h )
) )
32oveq1d 5835 . . . . 5  |-  ( x  =  if ( x  e.  ~H ,  x ,  0h )  ->  (
( T `  x
)  .ih  ( T `  y ) )  =  ( ( T `  if ( x  e.  ~H ,  x ,  0h )
)  .ih  ( T `  y ) ) )
4 oveq1 5827 . . . . 5  |-  ( x  =  if ( x  e.  ~H ,  x ,  0h )  ->  (
x  .ih  y )  =  ( if ( x  e.  ~H ,  x ,  0h )  .ih  y ) )
53, 4eqeq12d 2298 . . . 4  |-  ( x  =  if ( x  e.  ~H ,  x ,  0h )  ->  (
( ( T `  x )  .ih  ( T `  y )
)  =  ( x 
.ih  y )  <->  ( ( T `  if (
x  e.  ~H ,  x ,  0h )
)  .ih  ( T `  y ) )  =  ( if ( x  e.  ~H ,  x ,  0h )  .ih  y
) ) )
6 fveq2 5486 . . . . . 6  |-  ( y  =  if ( y  e.  ~H ,  y ,  0h )  -> 
( T `  y
)  =  ( T `
 if ( y  e.  ~H ,  y ,  0h ) ) )
76oveq2d 5836 . . . . 5  |-  ( y  =  if ( y  e.  ~H ,  y ,  0h )  -> 
( ( T `  if ( x  e.  ~H ,  x ,  0h )
)  .ih  ( T `  y ) )  =  ( ( T `  if ( x  e.  ~H ,  x ,  0h )
)  .ih  ( T `  if ( y  e. 
~H ,  y ,  0h ) ) ) )
8 oveq2 5828 . . . . 5  |-  ( y  =  if ( y  e.  ~H ,  y ,  0h )  -> 
( if ( x  e.  ~H ,  x ,  0h )  .ih  y
)  =  ( if ( x  e.  ~H ,  x ,  0h )  .ih  if ( y  e. 
~H ,  y ,  0h ) ) )
97, 8eqeq12d 2298 . . . 4  |-  ( y  =  if ( y  e.  ~H ,  y ,  0h )  -> 
( ( ( T `
 if ( x  e.  ~H ,  x ,  0h ) )  .ih  ( T `  y ) )  =  ( if ( x  e.  ~H ,  x ,  0h )  .ih  y )  <->  ( ( T `  if (
x  e.  ~H ,  x ,  0h )
)  .ih  ( T `  if ( y  e. 
~H ,  y ,  0h ) ) )  =  ( if ( x  e.  ~H ,  x ,  0h )  .ih  if ( y  e. 
~H ,  y ,  0h ) ) ) )
10 lnopuni.1 . . . . 5  |-  T  e. 
LinOp
11 lnopuni.3 . . . . 5  |-  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x )
12 ax-hv0cl 21579 . . . . . 6  |-  0h  e.  ~H
1312elimel 3618 . . . . 5  |-  if ( x  e.  ~H ,  x ,  0h )  e.  ~H
1412elimel 3618 . . . . 5  |-  if ( y  e.  ~H , 
y ,  0h )  e.  ~H
1510, 11, 13, 14lnopunilem2 22587 . . . 4  |-  ( ( T `  if ( x  e.  ~H ,  x ,  0h )
)  .ih  ( T `  if ( y  e. 
~H ,  y ,  0h ) ) )  =  ( if ( x  e.  ~H ,  x ,  0h )  .ih  if ( y  e. 
~H ,  y ,  0h ) )
165, 9, 15dedth2h 3608 . . 3  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( T `  x )  .ih  ( T `  y )
)  =  ( x 
.ih  y ) )
1716rgen2a 2610 . 2  |-  A. x  e.  ~H  A. y  e. 
~H  ( ( T `
 x )  .ih  ( T `  y ) )  =  ( x 
.ih  y )
18 elunop 22448 . 2  |-  ( T  e.  UniOp 
<->  ( T : ~H -onto-> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( ( T `  x )  .ih  ( T `  y )
)  =  ( x 
.ih  y ) ) )
191, 17, 18mpbir2an 886 1  |-  T  e. 
UniOp
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1685   A.wral 2544   ifcif 3566   -onto->wfo 5219   ` cfv 5221  (class class class)co 5820   ~Hchil 21495    .ih csp 21498   normhcno 21499   0hc0v 21500   LinOpclo 21523   UniOpcuo 21525
This theorem is referenced by:  elunop2  22589
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811  ax-hilex 21575  ax-hfvadd 21576  ax-hv0cl 21579  ax-hfvmul 21581  ax-hvmul0 21586  ax-hfi 21654  ax-his1 21657  ax-his2 21658  ax-his3 21659  ax-his4 21660
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-sup 7190  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-n0 9962  df-z 10021  df-uz 10227  df-rp 10351  df-seq 11043  df-exp 11101  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-hnorm 21544  df-lnop 22417  df-unop 22419
  Copyright terms: Public domain W3C validator