MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1eq Unicode version

Theorem lo1eq 12350
Description: Two functions that are eventually equal to one another are eventually bounded if one of them is. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
lo1eq.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
lo1eq.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
lo1eq.3  |-  ( ph  ->  D  e.  RR )
lo1eq.4  |-  ( (
ph  /\  ( x  e.  A  /\  D  <_  x ) )  ->  B  =  C )
Assertion
Ref Expression
lo1eq  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. 
<_ O ( 1 )  <-> 
( x  e.  A  |->  C )  e.  <_ O ( 1 ) ) )
Distinct variable groups:    x, A    x, D    ph, x
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem lo1eq
StepHypRef Expression
1 lo1dm 12301 . . 3  |-  ( ( x  e.  A  |->  B )  e.  <_ O
( 1 )  ->  dom  ( x  e.  A  |->  B )  C_  RR )
2 lo1eq.1 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
3 eqid 2435 . . . . . 6  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
42, 3fmptd 5884 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> RR )
5 fdm 5586 . . . . 5  |-  ( ( x  e.  A  |->  B ) : A --> RR  ->  dom  ( x  e.  A  |->  B )  =  A )
64, 5syl 16 . . . 4  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
76sseq1d 3367 . . 3  |-  ( ph  ->  ( dom  ( x  e.  A  |->  B ) 
C_  RR  <->  A  C_  RR ) )
81, 7syl5ib 211 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. 
<_ O ( 1 )  ->  A  C_  RR ) )
9 lo1dm 12301 . . 3  |-  ( ( x  e.  A  |->  C )  e.  <_ O
( 1 )  ->  dom  ( x  e.  A  |->  C )  C_  RR )
10 lo1eq.2 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
11 eqid 2435 . . . . . 6  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
1210, 11fmptd 5884 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  C ) : A --> RR )
13 fdm 5586 . . . . 5  |-  ( ( x  e.  A  |->  C ) : A --> RR  ->  dom  ( x  e.  A  |->  C )  =  A )
1412, 13syl 16 . . . 4  |-  ( ph  ->  dom  ( x  e.  A  |->  C )  =  A )
1514sseq1d 3367 . . 3  |-  ( ph  ->  ( dom  ( x  e.  A  |->  C ) 
C_  RR  <->  A  C_  RR ) )
169, 15syl5ib 211 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e. 
<_ O ( 1 )  ->  A  C_  RR ) )
17 simpr 448 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,)  +oo ) ) )  ->  x  e.  ( A  i^i  ( D [,)  +oo ) ) )
18 elin 3522 . . . . . . . . . . . . . 14  |-  ( x  e.  ( A  i^i  ( D [,)  +oo )
)  <->  ( x  e.  A  /\  x  e.  ( D [,)  +oo ) ) )
1917, 18sylib 189 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,)  +oo ) ) )  ->  ( x  e.  A  /\  x  e.  ( D [,)  +oo ) ) )
2019simpld 446 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,)  +oo ) ) )  ->  x  e.  A
)
2119simprd 450 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,)  +oo ) ) )  ->  x  e.  ( D [,)  +oo )
)
22 lo1eq.3 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  D  e.  RR )
23 elicopnf 10989 . . . . . . . . . . . . . . . 16  |-  ( D  e.  RR  ->  (
x  e.  ( D [,)  +oo )  <->  ( x  e.  RR  /\  D  <_  x ) ) )
2422, 23syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  e.  ( D [,)  +oo )  <->  ( x  e.  RR  /\  D  <_  x ) ) )
2524biimpa 471 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( D [,)  +oo )
)  ->  ( x  e.  RR  /\  D  <_  x ) )
2621, 25syldan 457 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,)  +oo ) ) )  ->  ( x  e.  RR  /\  D  <_  x ) )
2726simprd 450 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,)  +oo ) ) )  ->  D  <_  x
)
2820, 27jca 519 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,)  +oo ) ) )  ->  ( x  e.  A  /\  D  <_  x ) )
29 lo1eq.4 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  A  /\  D  <_  x ) )  ->  B  =  C )
3028, 29syldan 457 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,)  +oo ) ) )  ->  B  =  C )
3130mpteq2dva 4287 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( A  i^i  ( D [,)  +oo ) )  |->  B )  =  ( x  e.  ( A  i^i  ( D [,)  +oo )
)  |->  C ) )
32 inss1 3553 . . . . . . . . . 10  |-  ( A  i^i  ( D [,)  +oo ) )  C_  A
33 resmpt 5182 . . . . . . . . . 10  |-  ( ( A  i^i  ( D [,)  +oo ) )  C_  A  ->  ( ( x  e.  A  |->  B )  |`  ( A  i^i  ( D [,)  +oo ) ) )  =  ( x  e.  ( A  i^i  ( D [,)  +oo ) )  |->  B ) )
3432, 33ax-mp 8 . . . . . . . . 9  |-  ( ( x  e.  A  |->  B )  |`  ( A  i^i  ( D [,)  +oo ) ) )  =  ( x  e.  ( A  i^i  ( D [,)  +oo ) )  |->  B )
35 resmpt 5182 . . . . . . . . . 10  |-  ( ( A  i^i  ( D [,)  +oo ) )  C_  A  ->  ( ( x  e.  A  |->  C )  |`  ( A  i^i  ( D [,)  +oo ) ) )  =  ( x  e.  ( A  i^i  ( D [,)  +oo ) )  |->  C ) )
3632, 35ax-mp 8 . . . . . . . . 9  |-  ( ( x  e.  A  |->  C )  |`  ( A  i^i  ( D [,)  +oo ) ) )  =  ( x  e.  ( A  i^i  ( D [,)  +oo ) )  |->  C )
3731, 34, 363eqtr4g 2492 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  B )  |`  ( A  i^i  ( D [,)  +oo ) ) )  =  ( ( x  e.  A  |->  C )  |`  ( A  i^i  ( D [,)  +oo ) ) ) )
38 resres 5150 . . . . . . . 8  |-  ( ( ( x  e.  A  |->  B )  |`  A )  |`  ( D [,)  +oo ) )  =  ( ( x  e.  A  |->  B )  |`  ( A  i^i  ( D [,)  +oo ) ) )
39 resres 5150 . . . . . . . 8  |-  ( ( ( x  e.  A  |->  C )  |`  A )  |`  ( D [,)  +oo ) )  =  ( ( x  e.  A  |->  C )  |`  ( A  i^i  ( D [,)  +oo ) ) )
4037, 38, 393eqtr4g 2492 . . . . . . 7  |-  ( ph  ->  ( ( ( x  e.  A  |->  B )  |`  A )  |`  ( D [,)  +oo ) )  =  ( ( ( x  e.  A  |->  C )  |`  A )  |`  ( D [,)  +oo ) ) )
41 ssid 3359 . . . . . . . 8  |-  A  C_  A
42 resmpt 5182 . . . . . . . 8  |-  ( A 
C_  A  ->  (
( x  e.  A  |->  B )  |`  A )  =  ( x  e.  A  |->  B ) )
43 reseq1 5131 . . . . . . . 8  |-  ( ( ( x  e.  A  |->  B )  |`  A )  =  ( x  e.  A  |->  B )  -> 
( ( ( x  e.  A  |->  B )  |`  A )  |`  ( D [,)  +oo ) )  =  ( ( x  e.  A  |->  B )  |`  ( D [,)  +oo )
) )
4441, 42, 43mp2b 10 . . . . . . 7  |-  ( ( ( x  e.  A  |->  B )  |`  A )  |`  ( D [,)  +oo ) )  =  ( ( x  e.  A  |->  B )  |`  ( D [,)  +oo ) )
45 resmpt 5182 . . . . . . . 8  |-  ( A 
C_  A  ->  (
( x  e.  A  |->  C )  |`  A )  =  ( x  e.  A  |->  C ) )
46 reseq1 5131 . . . . . . . 8  |-  ( ( ( x  e.  A  |->  C )  |`  A )  =  ( x  e.  A  |->  C )  -> 
( ( ( x  e.  A  |->  C )  |`  A )  |`  ( D [,)  +oo ) )  =  ( ( x  e.  A  |->  C )  |`  ( D [,)  +oo )
) )
4741, 45, 46mp2b 10 . . . . . . 7  |-  ( ( ( x  e.  A  |->  C )  |`  A )  |`  ( D [,)  +oo ) )  =  ( ( x  e.  A  |->  C )  |`  ( D [,)  +oo ) )
4840, 44, 473eqtr3g 2490 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  B )  |`  ( D [,)  +oo )
)  =  ( ( x  e.  A  |->  C )  |`  ( D [,)  +oo ) ) )
4948eleq1d 2501 . . . . 5  |-  ( ph  ->  ( ( ( x  e.  A  |->  B )  |`  ( D [,)  +oo ) )  e.  <_ O ( 1 )  <->  ( (
x  e.  A  |->  C )  |`  ( D [,)  +oo ) )  e. 
<_ O ( 1 ) ) )
5049adantr 452 . . . 4  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( ( x  e.  A  |->  B )  |`  ( D [,)  +oo ) )  e. 
<_ O ( 1 )  <-> 
( ( x  e.  A  |->  C )  |`  ( D [,)  +oo )
)  e.  <_ O
( 1 ) ) )
514adantr 452 . . . . 5  |-  ( (
ph  /\  A  C_  RR )  ->  ( x  e.  A  |->  B ) : A --> RR )
52 simpr 448 . . . . 5  |-  ( (
ph  /\  A  C_  RR )  ->  A  C_  RR )
5322adantr 452 . . . . 5  |-  ( (
ph  /\  A  C_  RR )  ->  D  e.  RR )
5451, 52, 53lo1resb 12346 . . . 4  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( x  e.  A  |->  B )  e.  <_ O ( 1 )  <->  ( ( x  e.  A  |->  B )  |`  ( D [,)  +oo ) )  e.  <_ O ( 1 ) ) )
5512adantr 452 . . . . 5  |-  ( (
ph  /\  A  C_  RR )  ->  ( x  e.  A  |->  C ) : A --> RR )
5655, 52, 53lo1resb 12346 . . . 4  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( x  e.  A  |->  C )  e.  <_ O ( 1 )  <->  ( ( x  e.  A  |->  C )  |`  ( D [,)  +oo ) )  e.  <_ O ( 1 ) ) )
5750, 54, 563bitr4d 277 . . 3  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( x  e.  A  |->  B )  e.  <_ O ( 1 )  <->  ( x  e.  A  |->  C )  e. 
<_ O ( 1 ) ) )
5857ex 424 . 2  |-  ( ph  ->  ( A  C_  RR  ->  ( ( x  e.  A  |->  B )  e. 
<_ O ( 1 )  <-> 
( x  e.  A  |->  C )  e.  <_ O ( 1 ) ) ) )
598, 16, 58pm5.21ndd 344 1  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. 
<_ O ( 1 )  <-> 
( x  e.  A  |->  C )  e.  <_ O ( 1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    i^i cin 3311    C_ wss 3312   class class class wbr 4204    e. cmpt 4258   dom cdm 4869    |` cres 4871   -->wf 5441  (class class class)co 6072   RRcr 8978    +oocpnf 9106    <_ cle 9110   [,)cico 10907   <_ O ( 1 )clo1 12269
This theorem is referenced by:  o1eq  12352
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-cnex 9035  ax-resscn 9036  ax-pre-lttri 9053  ax-pre-lttrn 9054
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-er 6896  df-pm 7012  df-en 7101  df-dom 7102  df-sdom 7103  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-ico 10911  df-lo1 12273
  Copyright terms: Public domain W3C validator