MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1o1 Unicode version

Theorem lo1o1 12002
Description: A function is eventually bounded iff its absolute value is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
lo1o1  |-  ( F : A --> CC  ->  ( F  e.  O ( 1 )  <->  ( abs  o.  F )  e.  <_ O ( 1 ) ) )

Proof of Theorem lo1o1
Dummy variables  x  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1dm 12000 . . 3  |-  ( F  e.  O ( 1 )  ->  dom  F  C_  RR )
2 fdm 5359 . . . 4  |-  ( F : A --> CC  ->  dom 
F  =  A )
32sseq1d 3206 . . 3  |-  ( F : A --> CC  ->  (  dom  F  C_  RR  <->  A 
C_  RR ) )
41, 3syl5ib 210 . 2  |-  ( F : A --> CC  ->  ( F  e.  O ( 1 )  ->  A  C_  RR ) )
5 lo1dm 11989 . . 3  |-  ( ( abs  o.  F )  e.  <_ O ( 1 )  ->  dom  ( abs 
o.  F )  C_  RR )
6 absf 11817 . . . . . 6  |-  abs : CC
--> RR
7 fco 5364 . . . . . 6  |-  ( ( abs : CC --> RR  /\  F : A --> CC )  ->  ( abs  o.  F ) : A --> RR )
86, 7mpan 651 . . . . 5  |-  ( F : A --> CC  ->  ( abs  o.  F ) : A --> RR )
9 fdm 5359 . . . . 5  |-  ( ( abs  o.  F ) : A --> RR  ->  dom  ( abs  o.  F
)  =  A )
108, 9syl 15 . . . 4  |-  ( F : A --> CC  ->  dom  ( abs  o.  F
)  =  A )
1110sseq1d 3206 . . 3  |-  ( F : A --> CC  ->  (  dom  ( abs  o.  F )  C_  RR  <->  A 
C_  RR ) )
125, 11syl5ib 210 . 2  |-  ( F : A --> CC  ->  ( ( abs  o.  F
)  e.  <_ O
( 1 )  ->  A  C_  RR ) )
13 fvco3 5558 . . . . . . . . 9  |-  ( ( F : A --> CC  /\  y  e.  A )  ->  ( ( abs  o.  F ) `  y
)  =  ( abs `  ( F `  y
) ) )
1413adantlr 695 . . . . . . . 8  |-  ( ( ( F : A --> CC  /\  A  C_  RR )  /\  y  e.  A
)  ->  ( ( abs  o.  F ) `  y )  =  ( abs `  ( F `
 y ) ) )
1514breq1d 4034 . . . . . . 7  |-  ( ( ( F : A --> CC  /\  A  C_  RR )  /\  y  e.  A
)  ->  ( (
( abs  o.  F
) `  y )  <_  m  <->  ( abs `  ( F `  y )
)  <_  m )
)
1615imbi2d 307 . . . . . 6  |-  ( ( ( F : A --> CC  /\  A  C_  RR )  /\  y  e.  A
)  ->  ( (
x  <_  y  ->  ( ( abs  o.  F
) `  y )  <_  m )  <->  ( x  <_  y  ->  ( abs `  ( F `  y
) )  <_  m
) ) )
1716ralbidva 2560 . . . . 5  |-  ( ( F : A --> CC  /\  A  C_  RR )  -> 
( A. y  e.  A  ( x  <_ 
y  ->  ( ( abs  o.  F ) `  y )  <_  m
)  <->  A. y  e.  A  ( x  <_  y  -> 
( abs `  ( F `  y )
)  <_  m )
) )
18172rexbidv 2587 . . . 4  |-  ( ( F : A --> CC  /\  A  C_  RR )  -> 
( E. x  e.  RR  E. m  e.  RR  A. y  e.  A  ( x  <_ 
y  ->  ( ( abs  o.  F ) `  y )  <_  m
)  <->  E. x  e.  RR  E. m  e.  RR  A. y  e.  A  (
x  <_  y  ->  ( abs `  ( F `
 y ) )  <_  m ) ) )
19 ello12 11986 . . . . 5  |-  ( ( ( abs  o.  F
) : A --> RR  /\  A  C_  RR )  -> 
( ( abs  o.  F )  e.  <_ O ( 1 )  <->  E. x  e.  RR  E. m  e.  RR  A. y  e.  A  ( x  <_ 
y  ->  ( ( abs  o.  F ) `  y )  <_  m
) ) )
208, 19sylan 457 . . . 4  |-  ( ( F : A --> CC  /\  A  C_  RR )  -> 
( ( abs  o.  F )  e.  <_ O ( 1 )  <->  E. x  e.  RR  E. m  e.  RR  A. y  e.  A  ( x  <_ 
y  ->  ( ( abs  o.  F ) `  y )  <_  m
) ) )
21 elo12 11997 . . . 4  |-  ( ( F : A --> CC  /\  A  C_  RR )  -> 
( F  e.  O
( 1 )  <->  E. x  e.  RR  E. m  e.  RR  A. y  e.  A  ( x  <_ 
y  ->  ( abs `  ( F `  y
) )  <_  m
) ) )
2218, 20, 213bitr4rd 277 . . 3  |-  ( ( F : A --> CC  /\  A  C_  RR )  -> 
( F  e.  O
( 1 )  <->  ( abs  o.  F )  e.  <_ O ( 1 ) ) )
2322ex 423 . 2  |-  ( F : A --> CC  ->  ( A  C_  RR  ->  ( F  e.  O ( 1 )  <->  ( abs  o.  F )  e.  <_ O ( 1 ) ) ) )
244, 12, 23pm5.21ndd 343 1  |-  ( F : A --> CC  ->  ( F  e.  O ( 1 )  <->  ( abs  o.  F )  e.  <_ O ( 1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1685   A.wral 2544   E.wrex 2545    C_ wss 3153   class class class wbr 4024    dom cdm 4688    o. ccom 4692   -->wf 5217   ` cfv 5221   CCcc 8731   RRcr 8732    <_ cle 8864   abscabs 11715   O ( 1 )co1 11956   <_ O ( 1 )clo1 11957
This theorem is referenced by:  lo1o12  12003  o1res  12030
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-pm 6771  df-en 6860  df-dom 6861  df-sdom 6862  df-sup 7190  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-n0 9962  df-z 10021  df-uz 10227  df-rp 10351  df-ico 10658  df-seq 11043  df-exp 11101  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-o1 11960  df-lo1 11961
  Copyright terms: Public domain W3C validator