MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1o1 Structured version   Unicode version

Theorem lo1o1 12357
Description: A function is eventually bounded iff its absolute value is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
lo1o1  |-  ( F : A --> CC  ->  ( F  e.  O ( 1 )  <->  ( abs  o.  F )  e.  <_ O ( 1 ) ) )

Proof of Theorem lo1o1
Dummy variables  x  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1dm 12355 . . 3  |-  ( F  e.  O ( 1 )  ->  dom  F  C_  RR )
2 fdm 5624 . . . 4  |-  ( F : A --> CC  ->  dom 
F  =  A )
32sseq1d 3361 . . 3  |-  ( F : A --> CC  ->  ( dom  F  C_  RR  <->  A 
C_  RR ) )
41, 3syl5ib 212 . 2  |-  ( F : A --> CC  ->  ( F  e.  O ( 1 )  ->  A  C_  RR ) )
5 lo1dm 12344 . . 3  |-  ( ( abs  o.  F )  e.  <_ O ( 1 )  ->  dom  ( abs 
o.  F )  C_  RR )
6 absf 12172 . . . . . 6  |-  abs : CC
--> RR
7 fco 5629 . . . . . 6  |-  ( ( abs : CC --> RR  /\  F : A --> CC )  ->  ( abs  o.  F ) : A --> RR )
86, 7mpan 653 . . . . 5  |-  ( F : A --> CC  ->  ( abs  o.  F ) : A --> RR )
9 fdm 5624 . . . . 5  |-  ( ( abs  o.  F ) : A --> RR  ->  dom  ( abs  o.  F
)  =  A )
108, 9syl 16 . . . 4  |-  ( F : A --> CC  ->  dom  ( abs  o.  F
)  =  A )
1110sseq1d 3361 . . 3  |-  ( F : A --> CC  ->  ( dom  ( abs  o.  F )  C_  RR  <->  A 
C_  RR ) )
125, 11syl5ib 212 . 2  |-  ( F : A --> CC  ->  ( ( abs  o.  F
)  e.  <_ O
( 1 )  ->  A  C_  RR ) )
13 fvco3 5829 . . . . . . . . 9  |-  ( ( F : A --> CC  /\  y  e.  A )  ->  ( ( abs  o.  F ) `  y
)  =  ( abs `  ( F `  y
) ) )
1413adantlr 697 . . . . . . . 8  |-  ( ( ( F : A --> CC  /\  A  C_  RR )  /\  y  e.  A
)  ->  ( ( abs  o.  F ) `  y )  =  ( abs `  ( F `
 y ) ) )
1514breq1d 4247 . . . . . . 7  |-  ( ( ( F : A --> CC  /\  A  C_  RR )  /\  y  e.  A
)  ->  ( (
( abs  o.  F
) `  y )  <_  m  <->  ( abs `  ( F `  y )
)  <_  m )
)
1615imbi2d 309 . . . . . 6  |-  ( ( ( F : A --> CC  /\  A  C_  RR )  /\  y  e.  A
)  ->  ( (
x  <_  y  ->  ( ( abs  o.  F
) `  y )  <_  m )  <->  ( x  <_  y  ->  ( abs `  ( F `  y
) )  <_  m
) ) )
1716ralbidva 2727 . . . . 5  |-  ( ( F : A --> CC  /\  A  C_  RR )  -> 
( A. y  e.  A  ( x  <_ 
y  ->  ( ( abs  o.  F ) `  y )  <_  m
)  <->  A. y  e.  A  ( x  <_  y  -> 
( abs `  ( F `  y )
)  <_  m )
) )
18172rexbidv 2754 . . . 4  |-  ( ( F : A --> CC  /\  A  C_  RR )  -> 
( E. x  e.  RR  E. m  e.  RR  A. y  e.  A  ( x  <_ 
y  ->  ( ( abs  o.  F ) `  y )  <_  m
)  <->  E. x  e.  RR  E. m  e.  RR  A. y  e.  A  (
x  <_  y  ->  ( abs `  ( F `
 y ) )  <_  m ) ) )
19 ello12 12341 . . . . 5  |-  ( ( ( abs  o.  F
) : A --> RR  /\  A  C_  RR )  -> 
( ( abs  o.  F )  e.  <_ O ( 1 )  <->  E. x  e.  RR  E. m  e.  RR  A. y  e.  A  ( x  <_ 
y  ->  ( ( abs  o.  F ) `  y )  <_  m
) ) )
208, 19sylan 459 . . . 4  |-  ( ( F : A --> CC  /\  A  C_  RR )  -> 
( ( abs  o.  F )  e.  <_ O ( 1 )  <->  E. x  e.  RR  E. m  e.  RR  A. y  e.  A  ( x  <_ 
y  ->  ( ( abs  o.  F ) `  y )  <_  m
) ) )
21 elo12 12352 . . . 4  |-  ( ( F : A --> CC  /\  A  C_  RR )  -> 
( F  e.  O
( 1 )  <->  E. x  e.  RR  E. m  e.  RR  A. y  e.  A  ( x  <_ 
y  ->  ( abs `  ( F `  y
) )  <_  m
) ) )
2218, 20, 213bitr4rd 279 . . 3  |-  ( ( F : A --> CC  /\  A  C_  RR )  -> 
( F  e.  O
( 1 )  <->  ( abs  o.  F )  e.  <_ O ( 1 ) ) )
2322ex 425 . 2  |-  ( F : A --> CC  ->  ( A  C_  RR  ->  ( F  e.  O ( 1 )  <->  ( abs  o.  F )  e.  <_ O ( 1 ) ) ) )
244, 12, 23pm5.21ndd 345 1  |-  ( F : A --> CC  ->  ( F  e.  O ( 1 )  <->  ( abs  o.  F )  e.  <_ O ( 1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1727   A.wral 2711   E.wrex 2712    C_ wss 3306   class class class wbr 4237   dom cdm 4907    o. ccom 4911   -->wf 5479   ` cfv 5483   CCcc 9019   RRcr 9020    <_ cle 9152   abscabs 12070   O ( 1 )co1 12311   <_ O ( 1 )clo1 12312
This theorem is referenced by:  lo1o12  12358  o1res  12385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098  ax-pre-sup 9099
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-er 6934  df-pm 7050  df-en 7139  df-dom 7140  df-sdom 7141  df-sup 7475  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-div 9709  df-nn 10032  df-2 10089  df-3 10090  df-n0 10253  df-z 10314  df-uz 10520  df-rp 10644  df-ico 10953  df-seq 11355  df-exp 11414  df-cj 11935  df-re 11936  df-im 11937  df-sqr 12071  df-abs 12072  df-o1 12315  df-lo1 12316
  Copyright terms: Public domain W3C validator