MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2ublem1 Unicode version

Theorem log2ublem1 20238
Description: Lemma for log2ub 20241. The proof of log2ub 20241, which is simply the evaluation of log2tlbnd 20237 for  N  =  4, takes the form of the addition of five fractions and showing this is less than another fraction. We could just perform exact arithmetic on these fractions, get a large rational number, and just multiply everything to verify the claim, but as anyone who uses decimal numbers for this task knows, it is often better to pick a common denominator  d (usually a large power of  10) and work with closest approximations of the form  n  /  d for some integer  n instead. It turns out that for our purposes it is sufficient to take  d  =  ( 3 ^ 7 )  x.  5  x.  7, which is also nice because it shares many factors in common with the fractions in question. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
log2ublem1.1  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  A )  <_  B
log2ublem1.2  |-  A  e.  RR
log2ublem1.3  |-  D  e. 
NN0
log2ublem1.4  |-  E  e.  NN
log2ublem1.5  |-  B  e. 
NN0
log2ublem1.6  |-  F  e. 
NN0
log2ublem1.7  |-  C  =  ( A  +  ( D  /  E ) )
log2ublem1.8  |-  ( B  +  F )  =  G
log2ublem1.9  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D )  <_ 
( E  x.  F
)
Assertion
Ref Expression
log2ublem1  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  C )  <_  G

Proof of Theorem log2ublem1
StepHypRef Expression
1 log2ublem1.1 . . 3  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  A )  <_  B
2 3nn 9874 . . . . . . . 8  |-  3  e.  NN
3 7nn0 9983 . . . . . . . 8  |-  7  e.  NN0
4 nnexpcl 11112 . . . . . . . 8  |-  ( ( 3  e.  NN  /\  7  e.  NN0 )  -> 
( 3 ^ 7 )  e.  NN )
52, 3, 4mp2an 653 . . . . . . 7  |-  ( 3 ^ 7 )  e.  NN
6 5nn 9876 . . . . . . . 8  |-  5  e.  NN
7 7nn 9878 . . . . . . . 8  |-  7  e.  NN
86, 7nnmulcli 9766 . . . . . . 7  |-  ( 5  x.  7 )  e.  NN
95, 8nnmulcli 9766 . . . . . 6  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  e.  NN
109nncni 9752 . . . . 5  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  e.  CC
11 log2ublem1.3 . . . . . 6  |-  D  e. 
NN0
1211nn0cni 9973 . . . . 5  |-  D  e.  CC
13 log2ublem1.4 . . . . . 6  |-  E  e.  NN
1413nncni 9752 . . . . 5  |-  E  e.  CC
1513nnne0i 9776 . . . . 5  |-  E  =/=  0
1610, 12, 14, 15divassi 9512 . . . 4  |-  ( ( ( ( 3 ^ 7 )  x.  (
5  x.  7 ) )  x.  D )  /  E )  =  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( D  /  E ) )
17 log2ublem1.9 . . . . 5  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D )  <_ 
( E  x.  F
)
18 3nn0 9979 . . . . . . . . . 10  |-  3  e.  NN0
1918, 3nn0expcli 11125 . . . . . . . . 9  |-  ( 3 ^ 7 )  e. 
NN0
20 5nn0 9981 . . . . . . . . . 10  |-  5  e.  NN0
2120, 3nn0mulcli 9998 . . . . . . . . 9  |-  ( 5  x.  7 )  e. 
NN0
2219, 21nn0mulcli 9998 . . . . . . . 8  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  e. 
NN0
2322, 11nn0mulcli 9998 . . . . . . 7  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D )  e. 
NN0
2423nn0rei 9972 . . . . . 6  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D )  e.  RR
25 log2ublem1.6 . . . . . . 7  |-  F  e. 
NN0
2625nn0rei 9972 . . . . . 6  |-  F  e.  RR
2713nnrei 9751 . . . . . . 7  |-  E  e.  RR
2813nngt0i 9775 . . . . . . 7  |-  0  <  E
2927, 28pm3.2i 441 . . . . . 6  |-  ( E  e.  RR  /\  0  <  E )
30 ledivmul 9625 . . . . . 6  |-  ( ( ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D
)  e.  RR  /\  F  e.  RR  /\  ( E  e.  RR  /\  0  <  E ) )  -> 
( ( ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D )  /  E )  <_  F  <->  ( ( ( 3 ^ 7 )  x.  (
5  x.  7 ) )  x.  D )  <_  ( E  x.  F ) ) )
3124, 26, 29, 30mp3an 1277 . . . . 5  |-  ( ( ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D
)  /  E )  <_  F  <->  ( (
( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D )  <_ 
( E  x.  F
) )
3217, 31mpbir 200 . . . 4  |-  ( ( ( ( 3 ^ 7 )  x.  (
5  x.  7 ) )  x.  D )  /  E )  <_  F
3316, 32eqbrtrri 4045 . . 3  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( D  /  E ) )  <_  F
349nnrei 9751 . . . . 5  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  e.  RR
35 log2ublem1.2 . . . . 5  |-  A  e.  RR
3634, 35remulcli 8847 . . . 4  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  A )  e.  RR
3711nn0rei 9972 . . . . . 6  |-  D  e.  RR
38 nndivre 9777 . . . . . 6  |-  ( ( D  e.  RR  /\  E  e.  NN )  ->  ( D  /  E
)  e.  RR )
3937, 13, 38mp2an 653 . . . . 5  |-  ( D  /  E )  e.  RR
4034, 39remulcli 8847 . . . 4  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( D  /  E ) )  e.  RR
41 log2ublem1.5 . . . . 5  |-  B  e. 
NN0
4241nn0rei 9972 . . . 4  |-  B  e.  RR
4336, 40, 42, 26le2addi 9332 . . 3  |-  ( ( ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  A
)  <_  B  /\  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( D  /  E ) )  <_  F )  -> 
( ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  A )  +  ( ( ( 3 ^ 7 )  x.  (
5  x.  7 ) )  x.  ( D  /  E ) ) )  <_  ( B  +  F ) )
441, 33, 43mp2an 653 . 2  |-  ( ( ( ( 3 ^ 7 )  x.  (
5  x.  7 ) )  x.  A )  +  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( D  /  E
) ) )  <_ 
( B  +  F
)
45 log2ublem1.7 . . . 4  |-  C  =  ( A  +  ( D  /  E ) )
4645oveq2i 5831 . . 3  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  C )  =  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( A  +  ( D  /  E ) ) )
4735recni 8845 . . . 4  |-  A  e.  CC
4839recni 8845 . . . 4  |-  ( D  /  E )  e.  CC
4910, 47, 48adddii 8843 . . 3  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( A  +  ( D  /  E
) ) )  =  ( ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  A )  +  ( ( ( 3 ^ 7 )  x.  (
5  x.  7 ) )  x.  ( D  /  E ) ) )
5046, 49eqtr2i 2305 . 2  |-  ( ( ( ( 3 ^ 7 )  x.  (
5  x.  7 ) )  x.  A )  +  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( D  /  E
) ) )  =  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  C
)
51 log2ublem1.8 . 2  |-  ( B  +  F )  =  G
5244, 50, 513brtr3i 4051 1  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  C )  <_  G
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1685   class class class wbr 4024  (class class class)co 5820   RRcr 8732   0cc0 8733    + caddc 8736    x. cmul 8738    < clt 8863    <_ cle 8864    / cdiv 9419   NNcn 9742   3c3 9792   5c5 9794   7c7 9796   NN0cn0 9961   ^cexp 11100
This theorem is referenced by:  log2ublem2  20239  log2ub  20241
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-5 9803  df-6 9804  df-7 9805  df-n0 9962  df-z 10021  df-uz 10227  df-seq 11043  df-exp 11101
  Copyright terms: Public domain W3C validator