MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfac2 Unicode version

Theorem logfac2 20419
Description: Another expression for the logarithm of a factorial, in terms of the von Mangoldt function. Equation 9.2.7 of [Shapiro], p. 329. (Contributed by Mario Carneiro, 15-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Assertion
Ref Expression
logfac2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( log `  ( ! `  ( |_ `  A ) ) )  =  sum_ k  e.  ( 1 ... ( |_
`  A ) ) ( (Λ `  k
)  x.  ( |_
`  ( A  / 
k ) ) ) )
Distinct variable group:    A, k

Proof of Theorem logfac2
StepHypRef Expression
1 flge0nn0 10915 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( |_ `  A
)  e.  NN0 )
2 logfac 19917 . . 3  |-  ( ( |_ `  A )  e.  NN0  ->  ( log `  ( ! `  ( |_ `  A ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( log `  n
) )
31, 2syl 17 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( log `  ( ! `  ( |_ `  A ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( log `  n
) )
4 fzfid 11002 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 1 ... ( |_ `  A ) )  e.  Fin )
5 fzfid 11002 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( 1 ... ( |_ `  A
) )  e.  Fin )
6 ssrab2 3233 . . . . 5  |-  { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }  C_  ( 1 ... ( |_ `  A
) )
7 ssfi 7051 . . . . 5  |-  ( ( ( 1 ... ( |_ `  A ) )  e.  Fin  /\  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }  C_  ( 1 ... ( |_ `  A ) ) )  ->  { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }  e.  Fin )
85, 6, 7sylancl 646 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }  e.  Fin )
9 flcl 10894 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  ZZ )
109adantr 453 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( |_ `  A
)  e.  ZZ )
11 fznn 10819 . . . . . . . 8  |-  ( ( |_ `  A )  e.  ZZ  ->  (
k  e.  ( 1 ... ( |_ `  A ) )  <->  ( k  e.  NN  /\  k  <_ 
( |_ `  A
) ) ) )
1210, 11syl 17 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( k  e.  ( 1 ... ( |_
`  A ) )  <-> 
( k  e.  NN  /\  k  <_  ( |_ `  A ) ) ) )
1312anbi1d 688 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( k  e.  ( 1 ... ( |_ `  A ) )  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n
) )  <->  ( (
k  e.  NN  /\  k  <_  ( |_ `  A ) )  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  k  ||  n ) ) ) )
14 nnre 9721 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  RR )
1514ad2antlr 710 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n ) )  ->  k  e.  RR )
16 elfznn 10786 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  NN )
1716ad2antrl 711 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n ) )  ->  n  e.  NN )
1817nnred 9729 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n ) )  ->  n  e.  RR )
19 reflcl 10895 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  RR )
2019ad3antrrr 713 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n ) )  ->  ( |_ `  A )  e.  RR )
21 simprr 736 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n ) )  ->  k  ||  n
)
22 nnz 10013 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  k  e.  ZZ )
2322ad2antlr 710 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n ) )  ->  k  e.  ZZ )
24 dvdsle 12537 . . . . . . . . . . . 12  |-  ( ( k  e.  ZZ  /\  n  e.  NN )  ->  ( k  ||  n  ->  k  <_  n )
)
2523, 17, 24syl2anc 645 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n ) )  ->  ( k  ||  n  ->  k  <_  n
) )
2621, 25mpd 16 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n ) )  ->  k  <_  n
)
27 elfzle2 10767 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  <_  ( |_ `  A
) )
2827ad2antrl 711 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n ) )  ->  n  <_  ( |_ `  A ) )
2915, 18, 20, 26, 28letrd 8941 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n ) )  ->  k  <_  ( |_ `  A ) )
3029expl 604 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( k  e.  NN  /\  ( n  e.  ( 1 ... ( |_ `  A
) )  /\  k  ||  n ) )  -> 
k  <_  ( |_ `  A ) ) )
3130pm4.71rd 619 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( k  e.  NN  /\  ( n  e.  ( 1 ... ( |_ `  A
) )  /\  k  ||  n ) )  <->  ( k  <_  ( |_ `  A
)  /\  ( k  e.  NN  /\  ( n  e.  ( 1 ... ( |_ `  A
) )  /\  k  ||  n ) ) ) ) )
32 an12 775 . . . . . . 7  |-  ( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  ( k  e.  NN  /\  k  ||  n ) )  <->  ( k  e.  NN  /\  ( n  e.  ( 1 ... ( |_ `  A
) )  /\  k  ||  n ) ) )
33 anass 633 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  k  <_  ( |_ `  A ) )  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  k  ||  n ) )  <-> 
( k  e.  NN  /\  ( k  <_  ( |_ `  A )  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  k  ||  n ) ) ) )
34 an12 775 . . . . . . . 8  |-  ( ( k  e.  NN  /\  ( k  <_  ( |_ `  A )  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  k  ||  n ) ) )  <->  ( k  <_ 
( |_ `  A
)  /\  ( k  e.  NN  /\  ( n  e.  ( 1 ... ( |_ `  A
) )  /\  k  ||  n ) ) ) )
3533, 34bitri 242 . . . . . . 7  |-  ( ( ( k  e.  NN  /\  k  <_  ( |_ `  A ) )  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  k  ||  n ) )  <-> 
( k  <_  ( |_ `  A )  /\  ( k  e.  NN  /\  ( n  e.  ( 1 ... ( |_
`  A ) )  /\  k  ||  n
) ) ) )
3631, 32, 353bitr4g 281 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  ( k  e.  NN  /\  k  ||  n ) )  <->  ( (
k  e.  NN  /\  k  <_  ( |_ `  A ) )  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  k  ||  n ) ) ) )
3713, 36bitr4d 249 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( k  e.  ( 1 ... ( |_ `  A ) )  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n
) )  <->  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  ( k  e.  NN  /\  k  ||  n ) ) ) )
38 breq2 4001 . . . . . . 7  |-  ( x  =  n  ->  (
k  ||  x  <->  k  ||  n ) )
3938elrab 2898 . . . . . 6  |-  ( n  e.  { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x } 
<->  ( n  e.  ( 1 ... ( |_
`  A ) )  /\  k  ||  n
) )
4039anbi2i 678 . . . . 5  |-  ( ( k  e.  ( 1 ... ( |_ `  A ) )  /\  n  e.  { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x } )  <->  ( k  e.  ( 1 ... ( |_ `  A ) )  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n
) ) )
41 breq1 4000 . . . . . . 7  |-  ( x  =  k  ->  (
x  ||  n  <->  k  ||  n ) )
4241elrab 2898 . . . . . 6  |-  ( k  e.  { x  e.  NN  |  x  ||  n }  <->  ( k  e.  NN  /\  k  ||  n ) )
4342anbi2i 678 . . . . 5  |-  ( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  k  e.  { x  e.  NN  |  x  ||  n } )  <->  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  ( k  e.  NN  /\  k  ||  n ) ) )
4437, 40, 433bitr4g 281 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( k  e.  ( 1 ... ( |_ `  A ) )  /\  n  e.  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }
)  <->  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  k  e.  {
x  e.  NN  |  x  ||  n } ) ) )
45 elfznn 10786 . . . . . . . 8  |-  ( k  e.  ( 1 ... ( |_ `  A
) )  ->  k  e.  NN )
4645adantl 454 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  k  e.  NN )
47 vmacl 20319 . . . . . . 7  |-  ( k  e.  NN  ->  (Λ `  k )  e.  RR )
4846, 47syl 17 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  (Λ `  k )  e.  RR )
4948recnd 8829 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  (Λ `  k )  e.  CC )
5049adantrr 700 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( k  e.  ( 1 ... ( |_
`  A ) )  /\  n  e.  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }
) )  ->  (Λ `  k )  e.  CC )
514, 4, 8, 44, 50fsumcom2 12203 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  sum_ k  e.  ( 1 ... ( |_ `  A ) ) sum_ n  e.  { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }  (Λ `  k )  =  sum_ n  e.  ( 1 ... ( |_
`  A ) )
sum_ k  e.  {
x  e.  NN  |  x  ||  n }  (Λ `  k ) )
52 fsumconst 12218 . . . . . 6  |-  ( ( { x  e.  ( 1 ... ( |_
`  A ) )  |  k  ||  x }  e.  Fin  /\  (Λ `  k )  e.  CC )  ->  sum_ n  e.  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x } 
(Λ `  k )  =  ( ( # `  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }
)  x.  (Λ `  k
) ) )
538, 49, 52syl2anc 645 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  sum_ n  e.  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x } 
(Λ `  k )  =  ( ( # `  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }
)  x.  (Λ `  k
) ) )
54 fzfid 11002 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( 1 ... ( |_ `  ( A  /  k ) ) )  e.  Fin )
55 simpll 733 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  A  e.  RR )
56 eqid 2258 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... ( |_ `  ( A  /  k ) ) )  |->  ( k  x.  m ) )  =  ( m  e.  ( 1 ... ( |_
`  ( A  / 
k ) ) ) 
|->  ( k  x.  m
) )
5755, 46, 56dvdsflf1o 20390 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( m  e.  ( 1 ... ( |_ `  ( A  / 
k ) ) ) 
|->  ( k  x.  m
) ) : ( 1 ... ( |_
`  ( A  / 
k ) ) ) -1-1-onto-> { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }
)
58 f1oeng 6848 . . . . . . . . 9  |-  ( ( ( 1 ... ( |_ `  ( A  / 
k ) ) )  e.  Fin  /\  (
m  e.  ( 1 ... ( |_ `  ( A  /  k
) ) )  |->  ( k  x.  m ) ) : ( 1 ... ( |_ `  ( A  /  k
) ) ) -1-1-onto-> { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x } )  ->  (
1 ... ( |_ `  ( A  /  k
) ) )  ~~  { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }
)
5954, 57, 58syl2anc 645 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( 1 ... ( |_ `  ( A  /  k ) ) )  ~~  { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x } )
60 hasheni 11314 . . . . . . . 8  |-  ( ( 1 ... ( |_
`  ( A  / 
k ) ) ) 
~~  { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }  ->  ( # `  (
1 ... ( |_ `  ( A  /  k
) ) ) )  =  ( # `  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }
) )
6159, 60syl 17 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( # `  (
1 ... ( |_ `  ( A  /  k
) ) ) )  =  ( # `  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }
) )
62 simpl 445 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  RR )
63 nndivre 9749 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  k  e.  NN )  ->  ( A  /  k
)  e.  RR )
6462, 45, 63syl2an 465 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( A  / 
k )  e.  RR )
65 nngt0 9743 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  0  <  k )
6614, 65jca 520 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
k  e.  RR  /\  0  <  k ) )
6745, 66syl 17 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( |_ `  A
) )  ->  (
k  e.  RR  /\  0  <  k ) )
68 divge0 9593 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( k  e.  RR  /\  0  <  k ) )  ->  0  <_  ( A  /  k ) )
6967, 68sylan2 462 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  0  <_  ( A  /  k ) )
70 flge0nn0 10915 . . . . . . . . 9  |-  ( ( ( A  /  k
)  e.  RR  /\  0  <_  ( A  / 
k ) )  -> 
( |_ `  ( A  /  k ) )  e.  NN0 )
7164, 69, 70syl2anc 645 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( |_ `  ( A  /  k
) )  e.  NN0 )
72 hashfz1 11312 . . . . . . . 8  |-  ( ( |_ `  ( A  /  k ) )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  ( A  / 
k ) ) ) )  =  ( |_
`  ( A  / 
k ) ) )
7371, 72syl 17 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( # `  (
1 ... ( |_ `  ( A  /  k
) ) ) )  =  ( |_ `  ( A  /  k
) ) )
7461, 73eqtr3d 2292 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( # `  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }
)  =  ( |_
`  ( A  / 
k ) ) )
7574oveq1d 5807 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( ( # `  { x  e.  ( 1 ... ( |_
`  A ) )  |  k  ||  x } )  x.  (Λ `  k ) )  =  ( ( |_ `  ( A  /  k
) )  x.  (Λ `  k ) ) )
7664flcld 10897 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( |_ `  ( A  /  k
) )  e.  ZZ )
7776zcnd 10086 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( |_ `  ( A  /  k
) )  e.  CC )
7877, 49mulcomd 8824 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( ( |_
`  ( A  / 
k ) )  x.  (Λ `  k )
)  =  ( (Λ `  k )  x.  ( |_ `  ( A  / 
k ) ) ) )
7953, 75, 783eqtrd 2294 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  sum_ n  e.  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x } 
(Λ `  k )  =  ( (Λ `  k
)  x.  ( |_
`  ( A  / 
k ) ) ) )
8079sumeq2dv 12142 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  sum_ k  e.  ( 1 ... ( |_ `  A ) ) sum_ n  e.  { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }  (Λ `  k )  =  sum_ k  e.  ( 1 ... ( |_
`  A ) ) ( (Λ `  k
)  x.  ( |_
`  ( A  / 
k ) ) ) )
8116adantl 454 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  n  e.  (
1 ... ( |_ `  A ) ) )  ->  n  e.  NN )
82 vmasum 20418 . . . . 5  |-  ( n  e.  NN  ->  sum_ k  e.  { x  e.  NN  |  x  ||  n } 
(Λ `  k )  =  ( log `  n
) )
8381, 82syl 17 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  n  e.  (
1 ... ( |_ `  A ) ) )  ->  sum_ k  e.  {
x  e.  NN  |  x  ||  n }  (Λ `  k )  =  ( log `  n ) )
8483sumeq2dv 12142 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) sum_ k  e.  { x  e.  NN  |  x  ||  n }  (Λ `  k
)  =  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( log `  n
) )
8551, 80, 843eqtr3d 2298 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  sum_ k  e.  ( 1 ... ( |_ `  A ) ) ( (Λ `  k )  x.  ( |_ `  ( A  /  k ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( log `  n
) )
863, 85eqtr4d 2293 1  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( log `  ( ! `  ( |_ `  A ) ) )  =  sum_ k  e.  ( 1 ... ( |_
`  A ) ) ( (Λ `  k
)  x.  ( |_
`  ( A  / 
k ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   {crab 2522    C_ wss 3127   class class class wbr 3997    e. cmpt 4051   -1-1-onto->wf1o 4672   ` cfv 4673  (class class class)co 5792    ~~ cen 6828   Fincfn 6831   CCcc 8703   RRcr 8704   0cc0 8705   1c1 8706    x. cmul 8710    < clt 8835    <_ cle 8836    / cdiv 9391   NNcn 9714   NN0cn0 9933   ZZcz 9992   ...cfz 10749   |_cfl 10891   !cfa 11255   #chash 11304   sum_csu 12124    || cdivides 12494   logclog 19875  Λcvma 20292
This theorem is referenced by:  vmadivsum  20594
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-map 6742  df-pm 6743  df-ixp 6786  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-7 9777  df-8 9778  df-9 9779  df-10 9780  df-n0 9934  df-z 9993  df-dec 10093  df-uz 10199  df-q 10285  df-rp 10323  df-xneg 10420  df-xadd 10421  df-xmul 10422  df-ioo 10627  df-ioc 10628  df-ico 10629  df-icc 10630  df-fz 10750  df-fzo 10838  df-fl 10892  df-mod 10941  df-seq 11014  df-exp 11072  df-fac 11256  df-bc 11283  df-hash 11305  df-shft 11528  df-cj 11550  df-re 11551  df-im 11552  df-sqr 11686  df-abs 11687  df-limsup 11911  df-clim 11928  df-rlim 11929  df-sum 12125  df-ef 12312  df-sin 12314  df-cos 12315  df-pi 12317  df-divides 12495  df-gcd 12649  df-prime 12722  df-pc 12853  df-struct 13113  df-ndx 13114  df-slot 13115  df-base 13116  df-sets 13117  df-ress 13118  df-plusg 13184  df-mulr 13185  df-starv 13186  df-sca 13187  df-vsca 13188  df-tset 13190  df-ple 13191  df-ds 13193  df-hom 13195  df-cco 13196  df-rest 13290  df-topn 13291  df-topgen 13307  df-pt 13308  df-prds 13311  df-xrs 13366  df-0g 13367  df-gsum 13368  df-qtop 13373  df-imas 13374  df-xps 13376  df-mre 13451  df-mrc 13452  df-acs 13454  df-mnd 14330  df-submnd 14379  df-mulg 14455  df-cntz 14756  df-cmn 15054  df-xmet 16336  df-met 16337  df-bl 16338  df-mopn 16339  df-cnfld 16341  df-top 16599  df-bases 16601  df-topon 16602  df-topsp 16603  df-cld 16719  df-ntr 16720  df-cls 16721  df-nei 16798  df-lp 16831  df-perf 16832  df-cn 16920  df-cnp 16921  df-haus 17006  df-tx 17220  df-hmeo 17409  df-fbas 17483  df-fg 17484  df-fil 17504  df-fm 17596  df-flim 17597  df-flf 17598  df-xms 17848  df-ms 17849  df-tms 17850  df-cncf 18345  df-limc 19179  df-dv 19180  df-log 19877  df-vma 20298
  Copyright terms: Public domain W3C validator