MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logsqvma Unicode version

Theorem logsqvma 20653
Description: A formula for  log ^
2 ( N ) in terms of the primes. Equation 10.4.6 of [Shapiro], p. 418. (Contributed by Mario Carneiro, 13-May-2016.)
Assertion
Ref Expression
logsqvma  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( sum_ u  e.  {
x  e.  NN  |  x  ||  d }  (
(Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  +  ( (Λ `  d
)  x.  ( log `  d ) ) )  =  ( ( log `  N ) ^ 2 ) )
Distinct variable group:    u, d, x, N

Proof of Theorem logsqvma
StepHypRef Expression
1 fzfid 11001 . . . 4  |-  ( N  e.  NN  ->  (
1 ... N )  e. 
Fin )
2 sgmss 20306 . . . 4  |-  ( N  e.  NN  ->  { x  e.  NN  |  x  ||  N }  C_  ( 1 ... N ) )
3 ssfi 7051 . . . 4  |-  ( ( ( 1 ... N
)  e.  Fin  /\  { x  e.  NN  |  x  ||  N }  C_  ( 1 ... N
) )  ->  { x  e.  NN  |  x  ||  N }  e.  Fin )
41, 2, 3syl2anc 645 . . 3  |-  ( N  e.  NN  ->  { x  e.  NN  |  x  ||  N }  e.  Fin )
5 fzfid 11001 . . . . 5  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  (
1 ... d )  e. 
Fin )
6 ssrab2 3233 . . . . . . . 8  |-  { x  e.  NN  |  x  ||  N }  C_  NN
76sseli 3151 . . . . . . 7  |-  ( d  e.  { x  e.  NN  |  x  ||  N }  ->  d  e.  NN )
87adantl 454 . . . . . 6  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  d  e.  NN )
9 sgmss 20306 . . . . . 6  |-  ( d  e.  NN  ->  { x  e.  NN  |  x  ||  d }  C_  ( 1 ... d ) )
108, 9syl 17 . . . . 5  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  { x  e.  NN  |  x  ||  d }  C_  ( 1 ... d ) )
11 ssfi 7051 . . . . 5  |-  ( ( ( 1 ... d
)  e.  Fin  /\  { x  e.  NN  |  x  ||  d }  C_  ( 1 ... d
) )  ->  { x  e.  NN  |  x  ||  d }  e.  Fin )
125, 10, 11syl2anc 645 . . . 4  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  { x  e.  NN  |  x  ||  d }  e.  Fin )
13 breq1 4000 . . . . . . . . . . 11  |-  ( x  =  u  ->  (
x  ||  d  <->  u  ||  d
) )
1413elrab 2898 . . . . . . . . . 10  |-  ( u  e.  { x  e.  NN  |  x  ||  d }  <->  ( u  e.  NN  /\  u  ||  d ) )
1514simplbi 448 . . . . . . . . 9  |-  ( u  e.  { x  e.  NN  |  x  ||  d }  ->  u  e.  NN )
1615ad2antll 712 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  ->  u  e.  NN )
17 vmacl 20318 . . . . . . . 8  |-  ( u  e.  NN  ->  (Λ `  u )  e.  RR )
1816, 17syl 17 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  -> 
(Λ `  u )  e.  RR )
1914simprbi 452 . . . . . . . . . 10  |-  ( u  e.  { x  e.  NN  |  x  ||  d }  ->  u  ||  d )
2019ad2antll 712 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  ->  u  ||  d )
217ad2antrl 711 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  -> 
d  e.  NN )
22 nndivdivides 12499 . . . . . . . . . 10  |-  ( ( d  e.  NN  /\  u  e.  NN )  ->  ( u  ||  d  <->  ( d  /  u )  e.  NN ) )
2321, 16, 22syl2anc 645 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  -> 
( u  ||  d  <->  ( d  /  u )  e.  NN ) )
2420, 23mpbid 203 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  -> 
( d  /  u
)  e.  NN )
25 vmacl 20318 . . . . . . . 8  |-  ( ( d  /  u )  e.  NN  ->  (Λ `  ( d  /  u
) )  e.  RR )
2624, 25syl 17 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  -> 
(Λ `  ( d  /  u ) )  e.  RR )
2718, 26remulcld 8831 . . . . . 6  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  -> 
( (Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  e.  RR )
2827recnd 8829 . . . . 5  |-  ( ( N  e.  NN  /\  ( d  e.  {
x  e.  NN  |  x  ||  N }  /\  u  e.  { x  e.  NN  |  x  ||  d } ) )  -> 
( (Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  e.  CC )
2928anassrs 632 . . . 4  |-  ( ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  /\  u  e.  { x  e.  NN  |  x  ||  d } )  ->  ( (Λ `  u )  x.  (Λ `  ( d  /  u
) ) )  e.  CC )
3012, 29fsumcl 12171 . . 3  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ u  e.  { x  e.  NN  |  x  ||  d }  ( (Λ `  u
)  x.  (Λ `  (
d  /  u ) ) )  e.  CC )
31 vmacl 20318 . . . . . 6  |-  ( d  e.  NN  ->  (Λ `  d )  e.  RR )
328, 31syl 17 . . . . 5  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  (Λ `  d )  e.  RR )
338nnrpd 10356 . . . . . 6  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  d  e.  RR+ )
3433relogcld 19936 . . . . 5  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  ( log `  d )  e.  RR )
3532, 34remulcld 8831 . . . 4  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  (
(Λ `  d )  x.  ( log `  d
) )  e.  RR )
3635recnd 8829 . . 3  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  (
(Λ `  d )  x.  ( log `  d
) )  e.  CC )
374, 30, 36fsumadd 12176 . 2  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( sum_ u  e.  {
x  e.  NN  |  x  ||  d }  (
(Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  +  ( (Λ `  d
)  x.  ( log `  d ) ) )  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  N } sum_ u  e.  { x  e.  NN  |  x  ||  d }  ( (Λ `  u )  x.  (Λ `  ( d  /  u
) ) )  + 
sum_ d  e.  {
x  e.  NN  |  x  ||  N }  (
(Λ `  d )  x.  ( log `  d
) ) ) )
38 id 21 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN )
39 oveq1 5799 . . . . . . 7  |-  ( d  =  ( u  x.  k )  ->  (
d  /  u )  =  ( ( u  x.  k )  /  u ) )
4039fveq2d 5462 . . . . . 6  |-  ( d  =  ( u  x.  k )  ->  (Λ `  ( d  /  u
) )  =  (Λ `  ( ( u  x.  k )  /  u
) ) )
4140oveq2d 5808 . . . . 5  |-  ( d  =  ( u  x.  k )  ->  (
(Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  =  ( (Λ `  u
)  x.  (Λ `  (
( u  x.  k
)  /  u ) ) ) )
4238, 41, 28fsumdvdscom 20387 . . . 4  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } sum_ u  e.  { x  e.  NN  |  x  ||  d }  ( (Λ `  u )  x.  (Λ `  ( d  /  u
) ) )  = 
sum_ u  e.  { x  e.  NN  |  x  ||  N } sum_ k  e.  {
x  e.  NN  |  x  ||  ( N  /  u ) }  (
(Λ `  u )  x.  (Λ `  ( (
u  x.  k )  /  u ) ) ) )
43 ssrab2 3233 . . . . . . . . . . . . 13  |-  { x  e.  NN  |  x  ||  ( N  /  u
) }  C_  NN
44 simpr 449 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )
4543, 44sseldi 3153 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  k  e.  NN )
4645nncnd 9730 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  k  e.  CC )
47 simpr 449 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  u  e.  { x  e.  NN  |  x  ||  N }
)
486, 47sseldi 3153 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  u  e.  NN )
4948nncnd 9730 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  u  e.  CC )
5049adantr 453 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  u  e.  CC )
5148nnne0d 9758 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  u  =/=  0 )
5251adantr 453 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  u  =/=  0 )
5346, 50, 52divcan3d 9509 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  ( (
u  x.  k )  /  u )  =  k )
5453fveq2d 5462 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  (Λ `  (
( u  x.  k
)  /  u ) )  =  (Λ `  k
) )
5554sumeq2dv 12141 . . . . . . . 8  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) }  (Λ `  ( (
u  x.  k )  /  u ) )  =  sum_ k  e.  {
x  e.  NN  |  x  ||  ( N  /  u ) }  (Λ `  k ) )
56 dvdsdivcl 20383 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  u )  e. 
{ x  e.  NN  |  x  ||  N }
)
576, 56sseldi 3153 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  u )  e.  NN )
58 vmasum 20417 . . . . . . . . 9  |-  ( ( N  /  u )  e.  NN  ->  sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) }  (Λ `  k )  =  ( log `  ( N  /  u ) ) )
5957, 58syl 17 . . . . . . . 8  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) }  (Λ `  k )  =  ( log `  ( N  /  u ) ) )
60 nnrp 10330 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  RR+ )
6160adantr 453 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  N  e.  RR+ )
6248nnrpd 10356 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  u  e.  RR+ )
6361, 62relogdivd 19939 . . . . . . . 8  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  ( log `  ( N  /  u ) )  =  ( ( log `  N
)  -  ( log `  u ) ) )
6455, 59, 633eqtrd 2294 . . . . . . 7  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) }  (Λ `  ( (
u  x.  k )  /  u ) )  =  ( ( log `  N )  -  ( log `  u ) ) )
6564oveq2d 5808 . . . . . 6  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (
(Λ `  u )  x. 
sum_ k  e.  {
x  e.  NN  |  x  ||  ( N  /  u ) }  (Λ `  ( ( u  x.  k )  /  u
) ) )  =  ( (Λ `  u
)  x.  ( ( log `  N )  -  ( log `  u
) ) ) )
66 fzfid 11001 . . . . . . . 8  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (
1 ... ( N  /  u ) )  e. 
Fin )
67 sgmss 20306 . . . . . . . . 9  |-  ( ( N  /  u )  e.  NN  ->  { x  e.  NN  |  x  ||  ( N  /  u
) }  C_  (
1 ... ( N  /  u ) ) )
6857, 67syl 17 . . . . . . . 8  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  { x  e.  NN  |  x  ||  ( N  /  u
) }  C_  (
1 ... ( N  /  u ) ) )
69 ssfi 7051 . . . . . . . 8  |-  ( ( ( 1 ... ( N  /  u ) )  e.  Fin  /\  {
x  e.  NN  |  x  ||  ( N  /  u ) }  C_  ( 1 ... ( N  /  u ) ) )  ->  { x  e.  NN  |  x  ||  ( N  /  u
) }  e.  Fin )
7066, 68, 69syl2anc 645 . . . . . . 7  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  { x  e.  NN  |  x  ||  ( N  /  u
) }  e.  Fin )
7148, 17syl 17 . . . . . . . 8  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (Λ `  u )  e.  RR )
7271recnd 8829 . . . . . . 7  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (Λ `  u )  e.  CC )
73 vmacl 20318 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (Λ `  k )  e.  RR )
7445, 73syl 17 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  (Λ `  k
)  e.  RR )
7574recnd 8829 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  (Λ `  k
)  e.  CC )
7654, 75eqeltrd 2332 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) } )  ->  (Λ `  (
( u  x.  k
)  /  u ) )  e.  CC )
7770, 72, 76fsummulc2 12211 . . . . . 6  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (
(Λ `  u )  x. 
sum_ k  e.  {
x  e.  NN  |  x  ||  ( N  /  u ) }  (Λ `  ( ( u  x.  k )  /  u
) ) )  = 
sum_ k  e.  {
x  e.  NN  |  x  ||  ( N  /  u ) }  (
(Λ `  u )  x.  (Λ `  ( (
u  x.  k )  /  u ) ) ) )
78 relogcl 19894 . . . . . . . . 9  |-  ( N  e.  RR+  ->  ( log `  N )  e.  RR )
7978recnd 8829 . . . . . . . 8  |-  ( N  e.  RR+  ->  ( log `  N )  e.  CC )
8061, 79syl 17 . . . . . . 7  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  ( log `  N )  e.  CC )
8162relogcld 19936 . . . . . . . 8  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  ( log `  u )  e.  RR )
8281recnd 8829 . . . . . . 7  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  ( log `  u )  e.  CC )
8372, 80, 82subdid 9203 . . . . . 6  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (
(Λ `  u )  x.  ( ( log `  N
)  -  ( log `  u ) ) )  =  ( ( (Λ `  u )  x.  ( log `  N ) )  -  ( (Λ `  u
)  x.  ( log `  u ) ) ) )
8465, 77, 833eqtr3d 2298 . . . . 5  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  u ) }  ( (Λ `  u
)  x.  (Λ `  (
( u  x.  k
)  /  u ) ) )  =  ( ( (Λ `  u
)  x.  ( log `  N ) )  -  ( (Λ `  u )  x.  ( log `  u
) ) ) )
8584sumeq2dv 12141 . . . 4  |-  ( N  e.  NN  ->  sum_ u  e.  { x  e.  NN  |  x  ||  N } sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  u
) }  ( (Λ `  u )  x.  (Λ `  ( ( u  x.  k )  /  u
) ) )  = 
sum_ u  e.  { x  e.  NN  |  x  ||  N }  ( (
(Λ `  u )  x.  ( log `  N
) )  -  (
(Λ `  u )  x.  ( log `  u
) ) ) )
8672, 80mulcld 8823 . . . . . 6  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (
(Λ `  u )  x.  ( log `  N
) )  e.  CC )
8772, 82mulcld 8823 . . . . . 6  |-  ( ( N  e.  NN  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  (
(Λ `  u )  x.  ( log `  u
) )  e.  CC )
884, 86, 87fsumsub 12215 . . . . 5  |-  ( N  e.  NN  ->  sum_ u  e.  { x  e.  NN  |  x  ||  N } 
( ( (Λ `  u
)  x.  ( log `  N ) )  -  ( (Λ `  u )  x.  ( log `  u
) ) )  =  ( sum_ u  e.  {
x  e.  NN  |  x  ||  N }  (
(Λ `  u )  x.  ( log `  N
) )  -  sum_ u  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  u )  x.  ( log `  u ) ) ) )
8960, 79syl 17 . . . . . . . 8  |-  ( N  e.  NN  ->  ( log `  N )  e.  CC )
9089sqvald 11208 . . . . . . 7  |-  ( N  e.  NN  ->  (
( log `  N
) ^ 2 )  =  ( ( log `  N )  x.  ( log `  N ) ) )
91 vmasum 20417 . . . . . . . 8  |-  ( N  e.  NN  ->  sum_ u  e.  { x  e.  NN  |  x  ||  N } 
(Λ `  u )  =  ( log `  N
) )
9291oveq1d 5807 . . . . . . 7  |-  ( N  e.  NN  ->  ( sum_ u  e.  { x  e.  NN  |  x  ||  N }  (Λ `  u
)  x.  ( log `  N ) )  =  ( ( log `  N
)  x.  ( log `  N ) ) )
934, 89, 72fsummulc1 12212 . . . . . . 7  |-  ( N  e.  NN  ->  ( sum_ u  e.  { x  e.  NN  |  x  ||  N }  (Λ `  u
)  x.  ( log `  N ) )  = 
sum_ u  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  u )  x.  ( log `  N ) ) )
9490, 92, 933eqtr2rd 2297 . . . . . 6  |-  ( N  e.  NN  ->  sum_ u  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  u )  x.  ( log `  N
) )  =  ( ( log `  N
) ^ 2 ) )
95 fveq2 5458 . . . . . . . . 9  |-  ( u  =  d  ->  (Λ `  u )  =  (Λ `  d ) )
96 fveq2 5458 . . . . . . . . 9  |-  ( u  =  d  ->  ( log `  u )  =  ( log `  d
) )
9795, 96oveq12d 5810 . . . . . . . 8  |-  ( u  =  d  ->  (
(Λ `  u )  x.  ( log `  u
) )  =  ( (Λ `  d )  x.  ( log `  d
) ) )
9897cbvsumv 12134 . . . . . . 7  |-  sum_ u  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  u )  x.  ( log `  u
) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  d )  x.  ( log `  d ) )
9998a1i 12 . . . . . 6  |-  ( N  e.  NN  ->  sum_ u  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  u )  x.  ( log `  u
) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  d )  x.  ( log `  d ) ) )
10094, 99oveq12d 5810 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ u  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  u )  x.  ( log `  N ) )  -  sum_ u  e.  {
x  e.  NN  |  x  ||  N }  (
(Λ `  u )  x.  ( log `  u
) ) )  =  ( ( ( log `  N ) ^ 2 )  -  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  ( log `  d
) ) ) )
10188, 100eqtrd 2290 . . . 4  |-  ( N  e.  NN  ->  sum_ u  e.  { x  e.  NN  |  x  ||  N } 
( ( (Λ `  u
)  x.  ( log `  N ) )  -  ( (Λ `  u )  x.  ( log `  u
) ) )  =  ( ( ( log `  N ) ^ 2 )  -  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  ( log `  d
) ) ) )
10242, 85, 1013eqtrd 2294 . . 3  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } sum_ u  e.  { x  e.  NN  |  x  ||  d }  ( (Λ `  u )  x.  (Λ `  ( d  /  u
) ) )  =  ( ( ( log `  N ) ^ 2 )  -  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  ( log `  d
) ) ) )
103102oveq1d 5807 . 2  |-  ( N  e.  NN  ->  ( sum_ d  e.  { x  e.  NN  |  x  ||  N } sum_ u  e.  {
x  e.  NN  |  x  ||  d }  (
(Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  +  sum_ d  e.  {
x  e.  NN  |  x  ||  N }  (
(Λ `  d )  x.  ( log `  d
) ) )  =  ( ( ( ( log `  N ) ^ 2 )  -  sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  d )  x.  ( log `  d ) ) )  +  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  ( log `  d
) ) ) )
10489sqcld 11209 . . 3  |-  ( N  e.  NN  ->  (
( log `  N
) ^ 2 )  e.  CC )
1054, 36fsumcl 12171 . . 3  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  ( log `  d
) )  e.  CC )
106104, 105npcand 9129 . 2  |-  ( N  e.  NN  ->  (
( ( ( log `  N ) ^ 2 )  -  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  ( log `  d
) ) )  + 
sum_ d  e.  {
x  e.  NN  |  x  ||  N }  (
(Λ `  d )  x.  ( log `  d
) ) )  =  ( ( log `  N
) ^ 2 ) )
10737, 103, 1063eqtrd 2294 1  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( sum_ u  e.  {
x  e.  NN  |  x  ||  d }  (
(Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  +  ( (Λ `  d
)  x.  ( log `  d ) ) )  =  ( ( log `  N ) ^ 2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2421   {crab 2522    C_ wss 3127   class class class wbr 3997   ` cfv 4673  (class class class)co 5792   Fincfn 6831   CCcc 8703   RRcr 8704   0cc0 8705   1c1 8706    + caddc 8708    x. cmul 8710    - cmin 9005    / cdiv 9391   NNcn 9714   2c2 9763   RR+crp 10321   ...cfz 10748   ^cexp 11070   sum_csu 12123    || cdivides 12493   logclog 19874  Λcvma 20291
This theorem is referenced by:  logsqvma2  20654
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-map 6742  df-pm 6743  df-ixp 6786  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-7 9777  df-8 9778  df-9 9779  df-10 9780  df-n0 9933  df-z 9992  df-dec 10092  df-uz 10198  df-q 10284  df-rp 10322  df-xneg 10419  df-xadd 10420  df-xmul 10421  df-ioo 10626  df-ioc 10627  df-ico 10628  df-icc 10629  df-fz 10749  df-fzo 10837  df-fl 10891  df-mod 10940  df-seq 11013  df-exp 11071  df-fac 11255  df-bc 11282  df-hash 11304  df-shft 11527  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-limsup 11910  df-clim 11927  df-rlim 11928  df-sum 12124  df-ef 12311  df-sin 12313  df-cos 12314  df-pi 12316  df-divides 12494  df-gcd 12648  df-prime 12721  df-pc 12852  df-struct 13112  df-ndx 13113  df-slot 13114  df-base 13115  df-sets 13116  df-ress 13117  df-plusg 13183  df-mulr 13184  df-starv 13185  df-sca 13186  df-vsca 13187  df-tset 13189  df-ple 13190  df-ds 13192  df-hom 13194  df-cco 13195  df-rest 13289  df-topn 13290  df-topgen 13306  df-pt 13307  df-prds 13310  df-xrs 13365  df-0g 13366  df-gsum 13367  df-qtop 13372  df-imas 13373  df-xps 13375  df-mre 13450  df-mrc 13451  df-acs 13453  df-mnd 14329  df-submnd 14378  df-mulg 14454  df-cntz 14755  df-cmn 15053  df-xmet 16335  df-met 16336  df-bl 16337  df-mopn 16338  df-cnfld 16340  df-top 16598  df-bases 16600  df-topon 16601  df-topsp 16602  df-cld 16718  df-ntr 16719  df-cls 16720  df-nei 16797  df-lp 16830  df-perf 16831  df-cn 16919  df-cnp 16920  df-haus 17005  df-tx 17219  df-hmeo 17408  df-fbas 17482  df-fg 17483  df-fil 17503  df-fm 17595  df-flim 17596  df-flf 17597  df-xms 17847  df-ms 17848  df-tms 17849  df-cncf 18344  df-limc 19178  df-dv 19179  df-log 19876  df-vma 20297
  Copyright terms: Public domain W3C validator