MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logsqvma2 Unicode version

Theorem logsqvma2 20524
Description: The Möbius inverse of logsqvma 20523. Equation 10.4.8 of [Shapiro], p. 418. (Contributed by Mario Carneiro, 13-May-2016.)
Assertion
Ref Expression
logsqvma2  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( ( mmu `  d )  x.  (
( log `  ( N  /  d ) ) ^ 2 ) )  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  (Λ `  ( N  /  d ) ) )  +  ( (Λ `  N )  x.  ( log `  N ) ) ) )
Distinct variable group:    x, d, N

Proof of Theorem logsqvma2
StepHypRef Expression
1 fzfid 10913 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
1 ... k )  e. 
Fin )
2 sgmss 20176 . . . . . . . . . 10  |-  ( k  e.  NN  ->  { x  e.  NN  |  x  ||  k }  C_  ( 1 ... k ) )
3 ssfi 6968 . . . . . . . . . 10  |-  ( ( ( 1 ... k
)  e.  Fin  /\  { x  e.  NN  |  x  ||  k }  C_  ( 1 ... k
) )  ->  { x  e.  NN  |  x  ||  k }  e.  Fin )
41, 2, 3syl2anc 645 . . . . . . . . 9  |-  ( k  e.  NN  ->  { x  e.  NN  |  x  ||  k }  e.  Fin )
5 ssrab2 3179 . . . . . . . . . . . 12  |-  { x  e.  NN  |  x  ||  k }  C_  NN
6 simpr 449 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  d  e.  { x  e.  NN  |  x  ||  k } )
75, 6sseldi 3101 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  d  e.  NN )
8 vmacl 20188 . . . . . . . . . . 11  |-  ( d  e.  NN  ->  (Λ `  d )  e.  RR )
97, 8syl 17 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  (Λ `  d )  e.  RR )
10 dvdsdivcl 20253 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  (
k  /  d )  e.  { x  e.  NN  |  x  ||  k } )
115, 10sseldi 3101 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  (
k  /  d )  e.  NN )
12 vmacl 20188 . . . . . . . . . . 11  |-  ( ( k  /  d )  e.  NN  ->  (Λ `  ( k  /  d
) )  e.  RR )
1311, 12syl 17 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  (Λ `  ( k  /  d
) )  e.  RR )
149, 13remulcld 8743 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  e.  RR )
154, 14fsumrecl 12084 . . . . . . . 8  |-  ( k  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d
)  x.  (Λ `  (
k  /  d ) ) )  e.  RR )
16 vmacl 20188 . . . . . . . . 9  |-  ( k  e.  NN  ->  (Λ `  k )  e.  RR )
17 nnrp 10242 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  RR+ )
1817relogcld 19806 . . . . . . . . 9  |-  ( k  e.  NN  ->  ( log `  k )  e.  RR )
1916, 18remulcld 8743 . . . . . . . 8  |-  ( k  e.  NN  ->  (
(Λ `  k )  x.  ( log `  k
) )  e.  RR )
2015, 19readdcld 8742 . . . . . . 7  |-  ( k  e.  NN  ->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) )  e.  RR )
2120recnd 8741 . . . . . 6  |-  ( k  e.  NN  ->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) )  e.  CC )
2221adantl 454 . . . . 5  |-  ( ( N  e.  NN  /\  k  e.  NN )  ->  ( sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) )  e.  CC )
23 eqid 2253 . . . . 5  |-  ( k  e.  NN  |->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) ) )  =  ( k  e.  NN  |->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) ) )
2422, 23fmptd 5536 . . . 4  |-  ( N  e.  NN  ->  (
k  e.  NN  |->  (
sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) ) ) : NN --> CC )
25 ssrab2 3179 . . . . . . . . 9  |-  { x  e.  NN  |  x  ||  n }  C_  NN
26 simpr 449 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  n  e.  NN )  /\  m  e.  {
x  e.  NN  |  x  ||  n } )  ->  m  e.  {
x  e.  NN  |  x  ||  n } )
2725, 26sseldi 3101 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  n  e.  NN )  /\  m  e.  {
x  e.  NN  |  x  ||  n } )  ->  m  e.  NN )
28 breq2 3924 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
x  ||  k  <->  x  ||  m
) )
2928rabbidv 2719 . . . . . . . . . . 11  |-  ( k  =  m  ->  { x  e.  NN  |  x  ||  k }  =  {
x  e.  NN  |  x  ||  m } )
30 oveq1 5717 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  (
k  /  d )  =  ( m  / 
d ) )
3130fveq2d 5381 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (Λ `  ( k  /  d
) )  =  (Λ `  ( m  /  d
) ) )
3231oveq2d 5726 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  =  ( (Λ `  d )  x.  (Λ `  ( m  /  d
) ) ) )
3332adantr 453 . . . . . . . . . . 11  |-  ( ( k  =  m  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  =  ( (Λ `  d )  x.  (Λ `  ( m  /  d
) ) ) )
3429, 33sumeq12dv 12056 . . . . . . . . . 10  |-  ( k  =  m  ->  sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d
)  x.  (Λ `  (
k  /  d ) ) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  m }  ( (Λ `  d )  x.  (Λ `  ( m  /  d
) ) ) )
35 fveq2 5377 . . . . . . . . . . 11  |-  ( k  =  m  ->  (Λ `  k )  =  (Λ `  m ) )
36 fveq2 5377 . . . . . . . . . . 11  |-  ( k  =  m  ->  ( log `  k )  =  ( log `  m
) )
3735, 36oveq12d 5728 . . . . . . . . . 10  |-  ( k  =  m  ->  (
(Λ `  k )  x.  ( log `  k
) )  =  ( (Λ `  m )  x.  ( log `  m
) ) )
3834, 37oveq12d 5728 . . . . . . . . 9  |-  ( k  =  m  ->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) )  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  m } 
( (Λ `  d )  x.  (Λ `  ( m  /  d ) ) )  +  ( (Λ `  m )  x.  ( log `  m ) ) ) )
39 ovex 5735 . . . . . . . . 9  |-  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) )  e.  _V
4038, 23, 39fvmpt3i 5457 . . . . . . . 8  |-  ( m  e.  NN  ->  (
( k  e.  NN  |->  ( sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) ) ) `  m
)  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  m }  ( (Λ `  d )  x.  (Λ `  ( m  /  d
) ) )  +  ( (Λ `  m
)  x.  ( log `  m ) ) ) )
4127, 40syl 17 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  n  e.  NN )  /\  m  e.  {
x  e.  NN  |  x  ||  n } )  ->  ( ( k  e.  NN  |->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) ) ) `  m )  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  m } 
( (Λ `  d )  x.  (Λ `  ( m  /  d ) ) )  +  ( (Λ `  m )  x.  ( log `  m ) ) ) )
4241sumeq2dv 12053 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  NN )  -> 
sum_ m  e.  { x  e.  NN  |  x  ||  n }  ( (
k  e.  NN  |->  (
sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) ) ) `  m
)  =  sum_ m  e.  { x  e.  NN  |  x  ||  n } 
( sum_ d  e.  {
x  e.  NN  |  x  ||  m }  (
(Λ `  d )  x.  (Λ `  ( m  /  d ) ) )  +  ( (Λ `  m )  x.  ( log `  m ) ) ) )
43 logsqvma 20523 . . . . . . 7  |-  ( n  e.  NN  ->  sum_ m  e.  { x  e.  NN  |  x  ||  n } 
( sum_ d  e.  {
x  e.  NN  |  x  ||  m }  (
(Λ `  d )  x.  (Λ `  ( m  /  d ) ) )  +  ( (Λ `  m )  x.  ( log `  m ) ) )  =  ( ( log `  n ) ^ 2 ) )
4443adantl 454 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  NN )  -> 
sum_ m  e.  { x  e.  NN  |  x  ||  n }  ( sum_ d  e.  { x  e.  NN  |  x  ||  m }  ( (Λ `  d )  x.  (Λ `  ( m  /  d
) ) )  +  ( (Λ `  m
)  x.  ( log `  m ) ) )  =  ( ( log `  n ) ^ 2 ) )
4542, 44eqtr2d 2286 . . . . 5  |-  ( ( N  e.  NN  /\  n  e.  NN )  ->  ( ( log `  n
) ^ 2 )  =  sum_ m  e.  {
x  e.  NN  |  x  ||  n }  (
( k  e.  NN  |->  ( sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) ) ) `  m
) )
4645mpteq2dva 4003 . . . 4  |-  ( N  e.  NN  ->  (
n  e.  NN  |->  ( ( log `  n
) ^ 2 ) )  =  ( n  e.  NN  |->  sum_ m  e.  { x  e.  NN  |  x  ||  n } 
( ( k  e.  NN  |->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d
)  x.  (Λ `  (
k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k
) ) ) ) `
 m ) ) )
4724, 46muinv 20265 . . 3  |-  ( N  e.  NN  ->  (
k  e.  NN  |->  (
sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) ) )  =  ( i  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( (
mmu `  j )  x.  ( ( n  e.  NN  |->  ( ( log `  n ) ^ 2 ) ) `  (
i  /  j ) ) ) ) )
4847fveq1d 5379 . 2  |-  ( N  e.  NN  ->  (
( k  e.  NN  |->  ( sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) ) ) `  N
)  =  ( ( i  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( (
mmu `  j )  x.  ( ( n  e.  NN  |->  ( ( log `  n ) ^ 2 ) ) `  (
i  /  j ) ) ) ) `  N ) )
49 breq2 3924 . . . . . 6  |-  ( k  =  N  ->  (
x  ||  k  <->  x  ||  N
) )
5049rabbidv 2719 . . . . 5  |-  ( k  =  N  ->  { x  e.  NN  |  x  ||  k }  =  {
x  e.  NN  |  x  ||  N } )
51 oveq1 5717 . . . . . . . 8  |-  ( k  =  N  ->  (
k  /  d )  =  ( N  / 
d ) )
5251fveq2d 5381 . . . . . . 7  |-  ( k  =  N  ->  (Λ `  ( k  /  d
) )  =  (Λ `  ( N  /  d
) ) )
5352oveq2d 5726 . . . . . 6  |-  ( k  =  N  ->  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  =  ( (Λ `  d )  x.  (Λ `  ( N  /  d
) ) ) )
5453adantr 453 . . . . 5  |-  ( ( k  =  N  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  =  ( (Λ `  d )  x.  (Λ `  ( N  /  d
) ) ) )
5550, 54sumeq12dv 12056 . . . 4  |-  ( k  =  N  ->  sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d
)  x.  (Λ `  (
k  /  d ) ) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  d )  x.  (Λ `  ( N  /  d
) ) ) )
56 fveq2 5377 . . . . 5  |-  ( k  =  N  ->  (Λ `  k )  =  (Λ `  N ) )
57 fveq2 5377 . . . . 5  |-  ( k  =  N  ->  ( log `  k )  =  ( log `  N
) )
5856, 57oveq12d 5728 . . . 4  |-  ( k  =  N  ->  (
(Λ `  k )  x.  ( log `  k
) )  =  ( (Λ `  N )  x.  ( log `  N
) ) )
5955, 58oveq12d 5728 . . 3  |-  ( k  =  N  ->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) )  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  (Λ `  ( N  /  d ) ) )  +  ( (Λ `  N )  x.  ( log `  N ) ) ) )
6059, 23, 39fvmpt3i 5457 . 2  |-  ( N  e.  NN  ->  (
( k  e.  NN  |->  ( sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) ) ) `  N
)  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  d )  x.  (Λ `  ( N  /  d
) ) )  +  ( (Λ `  N
)  x.  ( log `  N ) ) ) )
61 fveq2 5377 . . . . . 6  |-  ( j  =  d  ->  (
mmu `  j )  =  ( mmu `  d ) )
62 oveq2 5718 . . . . . . . 8  |-  ( j  =  d  ->  (
i  /  j )  =  ( i  / 
d ) )
6362fveq2d 5381 . . . . . . 7  |-  ( j  =  d  ->  ( log `  ( i  / 
j ) )  =  ( log `  (
i  /  d ) ) )
6463oveq1d 5725 . . . . . 6  |-  ( j  =  d  ->  (
( log `  (
i  /  j ) ) ^ 2 )  =  ( ( log `  ( i  /  d
) ) ^ 2 ) )
6561, 64oveq12d 5728 . . . . 5  |-  ( j  =  d  ->  (
( mmu `  j
)  x.  ( ( log `  ( i  /  j ) ) ^ 2 ) )  =  ( ( mmu `  d )  x.  (
( log `  (
i  /  d ) ) ^ 2 ) ) )
6665cbvsumv 12046 . . . 4  |-  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  j )  x.  (
( log `  (
i  /  j ) ) ^ 2 ) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  d )  x.  (
( log `  (
i  /  d ) ) ^ 2 ) )
67 breq2 3924 . . . . . 6  |-  ( i  =  N  ->  (
x  ||  i  <->  x  ||  N
) )
6867rabbidv 2719 . . . . 5  |-  ( i  =  N  ->  { x  e.  NN  |  x  ||  i }  =  {
x  e.  NN  |  x  ||  N } )
69 oveq1 5717 . . . . . . . . 9  |-  ( i  =  N  ->  (
i  /  d )  =  ( N  / 
d ) )
7069fveq2d 5381 . . . . . . . 8  |-  ( i  =  N  ->  ( log `  ( i  / 
d ) )  =  ( log `  ( N  /  d ) ) )
7170oveq1d 5725 . . . . . . 7  |-  ( i  =  N  ->  (
( log `  (
i  /  d ) ) ^ 2 )  =  ( ( log `  ( N  /  d
) ) ^ 2 ) )
7271oveq2d 5726 . . . . . 6  |-  ( i  =  N  ->  (
( mmu `  d
)  x.  ( ( log `  ( i  /  d ) ) ^ 2 ) )  =  ( ( mmu `  d )  x.  (
( log `  ( N  /  d ) ) ^ 2 ) ) )
7372adantr 453 . . . . 5  |-  ( ( i  =  N  /\  d  e.  { x  e.  NN  |  x  ||  i } )  ->  (
( mmu `  d
)  x.  ( ( log `  ( i  /  d ) ) ^ 2 ) )  =  ( ( mmu `  d )  x.  (
( log `  ( N  /  d ) ) ^ 2 ) ) )
7468, 73sumeq12dv 12056 . . . 4  |-  ( i  =  N  ->  sum_ d  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  d )  x.  (
( log `  (
i  /  d ) ) ^ 2 ) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( ( mmu `  d )  x.  (
( log `  ( N  /  d ) ) ^ 2 ) ) )
7566, 74syl5eq 2297 . . 3  |-  ( i  =  N  ->  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  j )  x.  (
( log `  (
i  /  j ) ) ^ 2 ) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( ( mmu `  d )  x.  (
( log `  ( N  /  d ) ) ^ 2 ) ) )
76 ssrab2 3179 . . . . . . . 8  |-  { x  e.  NN  |  x  ||  i }  C_  NN
77 dvdsdivcl 20253 . . . . . . . 8  |-  ( ( i  e.  NN  /\  j  e.  { x  e.  NN  |  x  ||  i } )  ->  (
i  /  j )  e.  { x  e.  NN  |  x  ||  i } )
7876, 77sseldi 3101 . . . . . . 7  |-  ( ( i  e.  NN  /\  j  e.  { x  e.  NN  |  x  ||  i } )  ->  (
i  /  j )  e.  NN )
79 fveq2 5377 . . . . . . . . 9  |-  ( n  =  ( i  / 
j )  ->  ( log `  n )  =  ( log `  (
i  /  j ) ) )
8079oveq1d 5725 . . . . . . . 8  |-  ( n  =  ( i  / 
j )  ->  (
( log `  n
) ^ 2 )  =  ( ( log `  ( i  /  j
) ) ^ 2 ) )
81 eqid 2253 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( log `  n ) ^ 2 ) )  =  ( n  e.  NN  |->  ( ( log `  n ) ^ 2 ) )
82 ovex 5735 . . . . . . . 8  |-  ( ( log `  n ) ^ 2 )  e. 
_V
8380, 81, 82fvmpt3i 5457 . . . . . . 7  |-  ( ( i  /  j )  e.  NN  ->  (
( n  e.  NN  |->  ( ( log `  n
) ^ 2 ) ) `  ( i  /  j ) )  =  ( ( log `  ( i  /  j
) ) ^ 2 ) )
8478, 83syl 17 . . . . . 6  |-  ( ( i  e.  NN  /\  j  e.  { x  e.  NN  |  x  ||  i } )  ->  (
( n  e.  NN  |->  ( ( log `  n
) ^ 2 ) ) `  ( i  /  j ) )  =  ( ( log `  ( i  /  j
) ) ^ 2 ) )
8584oveq2d 5726 . . . . 5  |-  ( ( i  e.  NN  /\  j  e.  { x  e.  NN  |  x  ||  i } )  ->  (
( mmu `  j
)  x.  ( ( n  e.  NN  |->  ( ( log `  n
) ^ 2 ) ) `  ( i  /  j ) ) )  =  ( ( mmu `  j )  x.  ( ( log `  ( i  /  j
) ) ^ 2 ) ) )
8685sumeq2dv 12053 . . . 4  |-  ( i  e.  NN  ->  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  j )  x.  (
( n  e.  NN  |->  ( ( log `  n
) ^ 2 ) ) `  ( i  /  j ) ) )  =  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  j )  x.  (
( log `  (
i  /  j ) ) ^ 2 ) ) )
8786mpteq2ia 3999 . . 3  |-  ( i  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  j )  x.  (
( n  e.  NN  |->  ( ( log `  n
) ^ 2 ) ) `  ( i  /  j ) ) ) )  =  ( i  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( (
mmu `  j )  x.  ( ( log `  (
i  /  j ) ) ^ 2 ) ) )
88 sumex 12037 . . 3  |-  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  j )  x.  (
( log `  (
i  /  j ) ) ^ 2 ) )  e.  _V
8975, 87, 88fvmpt3i 5457 . 2  |-  ( N  e.  NN  ->  (
( i  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( (
mmu `  j )  x.  ( ( n  e.  NN  |->  ( ( log `  n ) ^ 2 ) ) `  (
i  /  j ) ) ) ) `  N )  =  sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( (
mmu `  d )  x.  ( ( log `  ( N  /  d ) ) ^ 2 ) ) )
9048, 60, 893eqtr3rd 2294 1  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( ( mmu `  d )  x.  (
( log `  ( N  /  d ) ) ^ 2 ) )  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  (Λ `  ( N  /  d ) ) )  +  ( (Λ `  N )  x.  ( log `  N ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   {crab 2512    C_ wss 3078   class class class wbr 3920    e. cmpt 3974   ` cfv 4592  (class class class)co 5710   Fincfn 6749   CCcc 8615   RRcr 8616   1c1 8618    + caddc 8620    x. cmul 8622    / cdiv 9303   NNcn 9626   2c2 9675   ...cfz 10660   ^cexp 10982   sum_csu 12035    || cdivides 12405   logclog 19744  Λcvma 20161   mmucmu 20164
This theorem is referenced by:  selberg  20529
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-disj 3892  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ioc 10539  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-fac 11167  df-bc 11194  df-hash 11216  df-shft 11439  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-limsup 11822  df-clim 11839  df-rlim 11840  df-sum 12036  df-ef 12223  df-sin 12225  df-cos 12226  df-pi 12228  df-divides 12406  df-gcd 12560  df-prime 12633  df-pc 12764  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-lp 16700  df-perf 16701  df-cn 16789  df-cnp 16790  df-haus 16875  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cncf 18214  df-limc 19048  df-dv 19049  df-log 19746  df-vma 20167  df-mu 20170
  Copyright terms: Public domain W3C validator