MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logsqvma2 Unicode version

Theorem logsqvma2 20686
Description: The Möbius inverse of logsqvma 20685. Equation 10.4.8 of [Shapiro], p. 418. (Contributed by Mario Carneiro, 13-May-2016.)
Assertion
Ref Expression
logsqvma2  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( ( mmu `  d )  x.  (
( log `  ( N  /  d ) ) ^ 2 ) )  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  (Λ `  ( N  /  d ) ) )  +  ( (Λ `  N )  x.  ( log `  N ) ) ) )
Distinct variable group:    x, d, N

Proof of Theorem logsqvma2
StepHypRef Expression
1 fzfid 11029 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
1 ... k )  e. 
Fin )
2 sgmss 20338 . . . . . . . . . 10  |-  ( k  e.  NN  ->  { x  e.  NN  |  x  ||  k }  C_  ( 1 ... k ) )
3 ssfi 7078 . . . . . . . . . 10  |-  ( ( ( 1 ... k
)  e.  Fin  /\  { x  e.  NN  |  x  ||  k }  C_  ( 1 ... k
) )  ->  { x  e.  NN  |  x  ||  k }  e.  Fin )
41, 2, 3syl2anc 645 . . . . . . . . 9  |-  ( k  e.  NN  ->  { x  e.  NN  |  x  ||  k }  e.  Fin )
5 ssrab2 3259 . . . . . . . . . . . 12  |-  { x  e.  NN  |  x  ||  k }  C_  NN
6 simpr 449 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  d  e.  { x  e.  NN  |  x  ||  k } )
75, 6sseldi 3179 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  d  e.  NN )
8 vmacl 20350 . . . . . . . . . . 11  |-  ( d  e.  NN  ->  (Λ `  d )  e.  RR )
97, 8syl 17 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  (Λ `  d )  e.  RR )
10 dvdsdivcl 20415 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  (
k  /  d )  e.  { x  e.  NN  |  x  ||  k } )
115, 10sseldi 3179 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  (
k  /  d )  e.  NN )
12 vmacl 20350 . . . . . . . . . . 11  |-  ( ( k  /  d )  e.  NN  ->  (Λ `  ( k  /  d
) )  e.  RR )
1311, 12syl 17 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  (Λ `  ( k  /  d
) )  e.  RR )
149, 13remulcld 8858 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  e.  RR )
154, 14fsumrecl 12201 . . . . . . . 8  |-  ( k  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d
)  x.  (Λ `  (
k  /  d ) ) )  e.  RR )
16 vmacl 20350 . . . . . . . . 9  |-  ( k  e.  NN  ->  (Λ `  k )  e.  RR )
17 nnrp 10358 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  RR+ )
1817relogcld 19968 . . . . . . . . 9  |-  ( k  e.  NN  ->  ( log `  k )  e.  RR )
1916, 18remulcld 8858 . . . . . . . 8  |-  ( k  e.  NN  ->  (
(Λ `  k )  x.  ( log `  k
) )  e.  RR )
2015, 19readdcld 8857 . . . . . . 7  |-  ( k  e.  NN  ->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) )  e.  RR )
2120recnd 8856 . . . . . 6  |-  ( k  e.  NN  ->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) )  e.  CC )
2221adantl 454 . . . . 5  |-  ( ( N  e.  NN  /\  k  e.  NN )  ->  ( sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) )  e.  CC )
23 eqid 2284 . . . . 5  |-  ( k  e.  NN  |->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) ) )  =  ( k  e.  NN  |->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) ) )
2422, 23fmptd 5645 . . . 4  |-  ( N  e.  NN  ->  (
k  e.  NN  |->  (
sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) ) ) : NN --> CC )
25 ssrab2 3259 . . . . . . . . 9  |-  { x  e.  NN  |  x  ||  n }  C_  NN
26 simpr 449 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  n  e.  NN )  /\  m  e.  {
x  e.  NN  |  x  ||  n } )  ->  m  e.  {
x  e.  NN  |  x  ||  n } )
2725, 26sseldi 3179 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  n  e.  NN )  /\  m  e.  {
x  e.  NN  |  x  ||  n } )  ->  m  e.  NN )
28 breq2 4028 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
x  ||  k  <->  x  ||  m
) )
2928rabbidv 2781 . . . . . . . . . . 11  |-  ( k  =  m  ->  { x  e.  NN  |  x  ||  k }  =  {
x  e.  NN  |  x  ||  m } )
30 oveq1 5826 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  (
k  /  d )  =  ( m  / 
d ) )
3130fveq2d 5489 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (Λ `  ( k  /  d
) )  =  (Λ `  ( m  /  d
) ) )
3231oveq2d 5835 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  =  ( (Λ `  d )  x.  (Λ `  ( m  /  d
) ) ) )
3332adantr 453 . . . . . . . . . . 11  |-  ( ( k  =  m  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  =  ( (Λ `  d )  x.  (Λ `  ( m  /  d
) ) ) )
3429, 33sumeq12dv 12173 . . . . . . . . . 10  |-  ( k  =  m  ->  sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d
)  x.  (Λ `  (
k  /  d ) ) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  m }  ( (Λ `  d )  x.  (Λ `  ( m  /  d
) ) ) )
35 fveq2 5485 . . . . . . . . . . 11  |-  ( k  =  m  ->  (Λ `  k )  =  (Λ `  m ) )
36 fveq2 5485 . . . . . . . . . . 11  |-  ( k  =  m  ->  ( log `  k )  =  ( log `  m
) )
3735, 36oveq12d 5837 . . . . . . . . . 10  |-  ( k  =  m  ->  (
(Λ `  k )  x.  ( log `  k
) )  =  ( (Λ `  m )  x.  ( log `  m
) ) )
3834, 37oveq12d 5837 . . . . . . . . 9  |-  ( k  =  m  ->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) )  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  m } 
( (Λ `  d )  x.  (Λ `  ( m  /  d ) ) )  +  ( (Λ `  m )  x.  ( log `  m ) ) ) )
39 ovex 5844 . . . . . . . . 9  |-  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) )  e.  _V
4038, 23, 39fvmpt3i 5566 . . . . . . . 8  |-  ( m  e.  NN  ->  (
( k  e.  NN  |->  ( sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) ) ) `  m
)  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  m }  ( (Λ `  d )  x.  (Λ `  ( m  /  d
) ) )  +  ( (Λ `  m
)  x.  ( log `  m ) ) ) )
4127, 40syl 17 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  n  e.  NN )  /\  m  e.  {
x  e.  NN  |  x  ||  n } )  ->  ( ( k  e.  NN  |->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) ) ) `  m )  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  m } 
( (Λ `  d )  x.  (Λ `  ( m  /  d ) ) )  +  ( (Λ `  m )  x.  ( log `  m ) ) ) )
4241sumeq2dv 12170 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  NN )  -> 
sum_ m  e.  { x  e.  NN  |  x  ||  n }  ( (
k  e.  NN  |->  (
sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) ) ) `  m
)  =  sum_ m  e.  { x  e.  NN  |  x  ||  n } 
( sum_ d  e.  {
x  e.  NN  |  x  ||  m }  (
(Λ `  d )  x.  (Λ `  ( m  /  d ) ) )  +  ( (Λ `  m )  x.  ( log `  m ) ) ) )
43 logsqvma 20685 . . . . . . 7  |-  ( n  e.  NN  ->  sum_ m  e.  { x  e.  NN  |  x  ||  n } 
( sum_ d  e.  {
x  e.  NN  |  x  ||  m }  (
(Λ `  d )  x.  (Λ `  ( m  /  d ) ) )  +  ( (Λ `  m )  x.  ( log `  m ) ) )  =  ( ( log `  n ) ^ 2 ) )
4443adantl 454 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  NN )  -> 
sum_ m  e.  { x  e.  NN  |  x  ||  n }  ( sum_ d  e.  { x  e.  NN  |  x  ||  m }  ( (Λ `  d )  x.  (Λ `  ( m  /  d
) ) )  +  ( (Λ `  m
)  x.  ( log `  m ) ) )  =  ( ( log `  n ) ^ 2 ) )
4542, 44eqtr2d 2317 . . . . 5  |-  ( ( N  e.  NN  /\  n  e.  NN )  ->  ( ( log `  n
) ^ 2 )  =  sum_ m  e.  {
x  e.  NN  |  x  ||  n }  (
( k  e.  NN  |->  ( sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) ) ) `  m
) )
4645mpteq2dva 4107 . . . 4  |-  ( N  e.  NN  ->  (
n  e.  NN  |->  ( ( log `  n
) ^ 2 ) )  =  ( n  e.  NN  |->  sum_ m  e.  { x  e.  NN  |  x  ||  n } 
( ( k  e.  NN  |->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d
)  x.  (Λ `  (
k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k
) ) ) ) `
 m ) ) )
4724, 46muinv 20427 . . 3  |-  ( N  e.  NN  ->  (
k  e.  NN  |->  (
sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) ) )  =  ( i  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( (
mmu `  j )  x.  ( ( n  e.  NN  |->  ( ( log `  n ) ^ 2 ) ) `  (
i  /  j ) ) ) ) )
4847fveq1d 5487 . 2  |-  ( N  e.  NN  ->  (
( k  e.  NN  |->  ( sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) ) ) `  N
)  =  ( ( i  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( (
mmu `  j )  x.  ( ( n  e.  NN  |->  ( ( log `  n ) ^ 2 ) ) `  (
i  /  j ) ) ) ) `  N ) )
49 breq2 4028 . . . . . 6  |-  ( k  =  N  ->  (
x  ||  k  <->  x  ||  N
) )
5049rabbidv 2781 . . . . 5  |-  ( k  =  N  ->  { x  e.  NN  |  x  ||  k }  =  {
x  e.  NN  |  x  ||  N } )
51 oveq1 5826 . . . . . . . 8  |-  ( k  =  N  ->  (
k  /  d )  =  ( N  / 
d ) )
5251fveq2d 5489 . . . . . . 7  |-  ( k  =  N  ->  (Λ `  ( k  /  d
) )  =  (Λ `  ( N  /  d
) ) )
5352oveq2d 5835 . . . . . 6  |-  ( k  =  N  ->  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  =  ( (Λ `  d )  x.  (Λ `  ( N  /  d
) ) ) )
5453adantr 453 . . . . 5  |-  ( ( k  =  N  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  =  ( (Λ `  d )  x.  (Λ `  ( N  /  d
) ) ) )
5550, 54sumeq12dv 12173 . . . 4  |-  ( k  =  N  ->  sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d
)  x.  (Λ `  (
k  /  d ) ) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  d )  x.  (Λ `  ( N  /  d
) ) ) )
56 fveq2 5485 . . . . 5  |-  ( k  =  N  ->  (Λ `  k )  =  (Λ `  N ) )
57 fveq2 5485 . . . . 5  |-  ( k  =  N  ->  ( log `  k )  =  ( log `  N
) )
5856, 57oveq12d 5837 . . . 4  |-  ( k  =  N  ->  (
(Λ `  k )  x.  ( log `  k
) )  =  ( (Λ `  N )  x.  ( log `  N
) ) )
5955, 58oveq12d 5837 . . 3  |-  ( k  =  N  ->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) )  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  (Λ `  ( N  /  d ) ) )  +  ( (Λ `  N )  x.  ( log `  N ) ) ) )
6059, 23, 39fvmpt3i 5566 . 2  |-  ( N  e.  NN  ->  (
( k  e.  NN  |->  ( sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) ) ) `  N
)  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  d )  x.  (Λ `  ( N  /  d
) ) )  +  ( (Λ `  N
)  x.  ( log `  N ) ) ) )
61 fveq2 5485 . . . . . 6  |-  ( j  =  d  ->  (
mmu `  j )  =  ( mmu `  d ) )
62 oveq2 5827 . . . . . . . 8  |-  ( j  =  d  ->  (
i  /  j )  =  ( i  / 
d ) )
6362fveq2d 5489 . . . . . . 7  |-  ( j  =  d  ->  ( log `  ( i  / 
j ) )  =  ( log `  (
i  /  d ) ) )
6463oveq1d 5834 . . . . . 6  |-  ( j  =  d  ->  (
( log `  (
i  /  j ) ) ^ 2 )  =  ( ( log `  ( i  /  d
) ) ^ 2 ) )
6561, 64oveq12d 5837 . . . . 5  |-  ( j  =  d  ->  (
( mmu `  j
)  x.  ( ( log `  ( i  /  j ) ) ^ 2 ) )  =  ( ( mmu `  d )  x.  (
( log `  (
i  /  d ) ) ^ 2 ) ) )
6665cbvsumv 12163 . . . 4  |-  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  j )  x.  (
( log `  (
i  /  j ) ) ^ 2 ) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  d )  x.  (
( log `  (
i  /  d ) ) ^ 2 ) )
67 breq2 4028 . . . . . 6  |-  ( i  =  N  ->  (
x  ||  i  <->  x  ||  N
) )
6867rabbidv 2781 . . . . 5  |-  ( i  =  N  ->  { x  e.  NN  |  x  ||  i }  =  {
x  e.  NN  |  x  ||  N } )
69 oveq1 5826 . . . . . . . . 9  |-  ( i  =  N  ->  (
i  /  d )  =  ( N  / 
d ) )
7069fveq2d 5489 . . . . . . . 8  |-  ( i  =  N  ->  ( log `  ( i  / 
d ) )  =  ( log `  ( N  /  d ) ) )
7170oveq1d 5834 . . . . . . 7  |-  ( i  =  N  ->  (
( log `  (
i  /  d ) ) ^ 2 )  =  ( ( log `  ( N  /  d
) ) ^ 2 ) )
7271oveq2d 5835 . . . . . 6  |-  ( i  =  N  ->  (
( mmu `  d
)  x.  ( ( log `  ( i  /  d ) ) ^ 2 ) )  =  ( ( mmu `  d )  x.  (
( log `  ( N  /  d ) ) ^ 2 ) ) )
7372adantr 453 . . . . 5  |-  ( ( i  =  N  /\  d  e.  { x  e.  NN  |  x  ||  i } )  ->  (
( mmu `  d
)  x.  ( ( log `  ( i  /  d ) ) ^ 2 ) )  =  ( ( mmu `  d )  x.  (
( log `  ( N  /  d ) ) ^ 2 ) ) )
7468, 73sumeq12dv 12173 . . . 4  |-  ( i  =  N  ->  sum_ d  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  d )  x.  (
( log `  (
i  /  d ) ) ^ 2 ) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( ( mmu `  d )  x.  (
( log `  ( N  /  d ) ) ^ 2 ) ) )
7566, 74syl5eq 2328 . . 3  |-  ( i  =  N  ->  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  j )  x.  (
( log `  (
i  /  j ) ) ^ 2 ) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( ( mmu `  d )  x.  (
( log `  ( N  /  d ) ) ^ 2 ) ) )
76 ssrab2 3259 . . . . . . . 8  |-  { x  e.  NN  |  x  ||  i }  C_  NN
77 dvdsdivcl 20415 . . . . . . . 8  |-  ( ( i  e.  NN  /\  j  e.  { x  e.  NN  |  x  ||  i } )  ->  (
i  /  j )  e.  { x  e.  NN  |  x  ||  i } )
7876, 77sseldi 3179 . . . . . . 7  |-  ( ( i  e.  NN  /\  j  e.  { x  e.  NN  |  x  ||  i } )  ->  (
i  /  j )  e.  NN )
79 fveq2 5485 . . . . . . . . 9  |-  ( n  =  ( i  / 
j )  ->  ( log `  n )  =  ( log `  (
i  /  j ) ) )
8079oveq1d 5834 . . . . . . . 8  |-  ( n  =  ( i  / 
j )  ->  (
( log `  n
) ^ 2 )  =  ( ( log `  ( i  /  j
) ) ^ 2 ) )
81 eqid 2284 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( log `  n ) ^ 2 ) )  =  ( n  e.  NN  |->  ( ( log `  n ) ^ 2 ) )
82 ovex 5844 . . . . . . . 8  |-  ( ( log `  n ) ^ 2 )  e. 
_V
8380, 81, 82fvmpt3i 5566 . . . . . . 7  |-  ( ( i  /  j )  e.  NN  ->  (
( n  e.  NN  |->  ( ( log `  n
) ^ 2 ) ) `  ( i  /  j ) )  =  ( ( log `  ( i  /  j
) ) ^ 2 ) )
8478, 83syl 17 . . . . . 6  |-  ( ( i  e.  NN  /\  j  e.  { x  e.  NN  |  x  ||  i } )  ->  (
( n  e.  NN  |->  ( ( log `  n
) ^ 2 ) ) `  ( i  /  j ) )  =  ( ( log `  ( i  /  j
) ) ^ 2 ) )
8584oveq2d 5835 . . . . 5  |-  ( ( i  e.  NN  /\  j  e.  { x  e.  NN  |  x  ||  i } )  ->  (
( mmu `  j
)  x.  ( ( n  e.  NN  |->  ( ( log `  n
) ^ 2 ) ) `  ( i  /  j ) ) )  =  ( ( mmu `  j )  x.  ( ( log `  ( i  /  j
) ) ^ 2 ) ) )
8685sumeq2dv 12170 . . . 4  |-  ( i  e.  NN  ->  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  j )  x.  (
( n  e.  NN  |->  ( ( log `  n
) ^ 2 ) ) `  ( i  /  j ) ) )  =  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  j )  x.  (
( log `  (
i  /  j ) ) ^ 2 ) ) )
8786mpteq2ia 4103 . . 3  |-  ( i  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  j )  x.  (
( n  e.  NN  |->  ( ( log `  n
) ^ 2 ) ) `  ( i  /  j ) ) ) )  =  ( i  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( (
mmu `  j )  x.  ( ( log `  (
i  /  j ) ) ^ 2 ) ) )
88 sumex 12154 . . 3  |-  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  j )  x.  (
( log `  (
i  /  j ) ) ^ 2 ) )  e.  _V
8975, 87, 88fvmpt3i 5566 . 2  |-  ( N  e.  NN  ->  (
( i  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( (
mmu `  j )  x.  ( ( n  e.  NN  |->  ( ( log `  n ) ^ 2 ) ) `  (
i  /  j ) ) ) ) `  N )  =  sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( (
mmu `  d )  x.  ( ( log `  ( N  /  d ) ) ^ 2 ) ) )
9048, 60, 893eqtr3rd 2325 1  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( ( mmu `  d )  x.  (
( log `  ( N  /  d ) ) ^ 2 ) )  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  (Λ `  ( N  /  d ) ) )  +  ( (Λ `  N )  x.  ( log `  N ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1628    e. wcel 1688   {crab 2548    C_ wss 3153   class class class wbr 4024    e. cmpt 4078   ` cfv 5221  (class class class)co 5819   Fincfn 6858   CCcc 8730   RRcr 8731   1c1 8733    + caddc 8735    x. cmul 8737    / cdiv 9418   NNcn 9741   2c2 9790   ...cfz 10776   ^cexp 11098   sum_csu 12152    || cdivides 12525   logclog 19906  Λcvma 20323   mmucmu 20326
This theorem is referenced by:  selberg  20691
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-disj 3995  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6655  df-map 6769  df-pm 6770  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10654  df-ioc 10655  df-ico 10656  df-icc 10657  df-fz 10777  df-fzo 10865  df-fl 10919  df-mod 10968  df-seq 11041  df-exp 11099  df-fac 11283  df-bc 11310  df-hash 11332  df-shft 11556  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-limsup 11939  df-clim 11956  df-rlim 11957  df-sum 12153  df-ef 12343  df-sin 12345  df-cos 12346  df-pi 12348  df-dvds 12526  df-gcd 12680  df-prm 12753  df-pc 12884  df-struct 13144  df-ndx 13145  df-slot 13146  df-base 13147  df-sets 13148  df-ress 13149  df-plusg 13215  df-mulr 13216  df-starv 13217  df-sca 13218  df-vsca 13219  df-tset 13221  df-ple 13222  df-ds 13224  df-hom 13226  df-cco 13227  df-rest 13321  df-topn 13322  df-topgen 13338  df-pt 13339  df-prds 13342  df-xrs 13397  df-0g 13398  df-gsum 13399  df-qtop 13404  df-imas 13405  df-xps 13407  df-mre 13482  df-mrc 13483  df-acs 13485  df-mnd 14361  df-submnd 14410  df-mulg 14486  df-cntz 14787  df-cmn 15085  df-xmet 16367  df-met 16368  df-bl 16369  df-mopn 16370  df-cnfld 16372  df-top 16630  df-bases 16632  df-topon 16633  df-topsp 16634  df-cld 16750  df-ntr 16751  df-cls 16752  df-nei 16829  df-lp 16862  df-perf 16863  df-cn 16951  df-cnp 16952  df-haus 17037  df-tx 17251  df-hmeo 17440  df-fbas 17514  df-fg 17515  df-fil 17535  df-fm 17627  df-flim 17628  df-flf 17629  df-xms 17879  df-ms 17880  df-tms 17881  df-cncf 18376  df-limc 19210  df-dv 19211  df-log 19908  df-vma 20329  df-mu 20332
  Copyright terms: Public domain W3C validator