MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpval Unicode version

Theorem lpval 17126
Description: The set of limit points of a subset of the base set of a topology. Alternate definition of limit point in [Munkres] p. 97. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
lpfval.1  |-  X  = 
U. J
Assertion
Ref Expression
lpval  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( limPt `  J
) `  S )  =  { x  |  x  e.  ( ( cls `  J ) `  ( S  \  { x }
) ) } )
Distinct variable groups:    x, J    x, S    x, X

Proof of Theorem lpval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . . 5  |-  X  = 
U. J
21lpfval 17125 . . . 4  |-  ( J  e.  Top  ->  ( limPt `  J )  =  ( y  e.  ~P X  |->  { x  |  x  e.  ( ( cls `  J ) `
 ( y  \  { x } ) ) } ) )
32fveq1d 5670 . . 3  |-  ( J  e.  Top  ->  (
( limPt `  J ) `  S )  =  ( ( y  e.  ~P X  |->  { x  |  x  e.  ( ( cls `  J ) `
 ( y  \  { x } ) ) } ) `  S ) )
43adantr 452 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( limPt `  J
) `  S )  =  ( ( y  e.  ~P X  |->  { x  |  x  e.  ( ( cls `  J
) `  ( y  \  { x } ) ) } ) `  S ) )
51topopn 16902 . . . . 5  |-  ( J  e.  Top  ->  X  e.  J )
6 elpw2g 4304 . . . . 5  |-  ( X  e.  J  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
75, 6syl 16 . . . 4  |-  ( J  e.  Top  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
87biimpar 472 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  e.  ~P X
)
95adantr 452 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  X  e.  J )
10 ssdifss 3421 . . . . . 6  |-  ( S 
C_  X  ->  ( S  \  { x }
)  C_  X )
111clsss3 17046 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( S  \  { x } )  C_  X
)  ->  ( ( cls `  J ) `  ( S  \  { x } ) )  C_  X )
1211sseld 3290 . . . . . 6  |-  ( ( J  e.  Top  /\  ( S  \  { x } )  C_  X
)  ->  ( x  e.  ( ( cls `  J
) `  ( S  \  { x } ) )  ->  x  e.  X ) )
1310, 12sylan2 461 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( x  e.  ( ( cls `  J
) `  ( S  \  { x } ) )  ->  x  e.  X ) )
1413abssdv 3360 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  { x  |  x  e.  ( ( cls `  J
) `  ( S  \  { x } ) ) }  C_  X
)
159, 14ssexd 4291 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  { x  |  x  e.  ( ( cls `  J
) `  ( S  \  { x } ) ) }  e.  _V )
16 difeq1 3401 . . . . . . 7  |-  ( y  =  S  ->  (
y  \  { x } )  =  ( S  \  { x } ) )
1716fveq2d 5672 . . . . . 6  |-  ( y  =  S  ->  (
( cls `  J
) `  ( y  \  { x } ) )  =  ( ( cls `  J ) `
 ( S  \  { x } ) ) )
1817eleq2d 2454 . . . . 5  |-  ( y  =  S  ->  (
x  e.  ( ( cls `  J ) `
 ( y  \  { x } ) )  <->  x  e.  (
( cls `  J
) `  ( S  \  { x } ) ) ) )
1918abbidv 2501 . . . 4  |-  ( y  =  S  ->  { x  |  x  e.  (
( cls `  J
) `  ( y  \  { x } ) ) }  =  {
x  |  x  e.  ( ( cls `  J
) `  ( S  \  { x } ) ) } )
20 eqid 2387 . . . 4  |-  ( y  e.  ~P X  |->  { x  |  x  e.  ( ( cls `  J
) `  ( y  \  { x } ) ) } )  =  ( y  e.  ~P X  |->  { x  |  x  e.  ( ( cls `  J ) `
 ( y  \  { x } ) ) } )
2119, 20fvmptg 5743 . . 3  |-  ( ( S  e.  ~P X  /\  { x  |  x  e.  ( ( cls `  J ) `  ( S  \  { x }
) ) }  e.  _V )  ->  ( ( y  e.  ~P X  |->  { x  |  x  e.  ( ( cls `  J ) `  (
y  \  { x } ) ) } ) `  S )  =  { x  |  x  e.  ( ( cls `  J ) `
 ( S  \  { x } ) ) } )
228, 15, 21syl2anc 643 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( y  e. 
~P X  |->  { x  |  x  e.  (
( cls `  J
) `  ( y  \  { x } ) ) } ) `  S )  =  {
x  |  x  e.  ( ( cls `  J
) `  ( S  \  { x } ) ) } )
234, 22eqtrd 2419 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( limPt `  J
) `  S )  =  { x  |  x  e.  ( ( cls `  J ) `  ( S  \  { x }
) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   {cab 2373   _Vcvv 2899    \ cdif 3260    C_ wss 3263   ~Pcpw 3742   {csn 3757   U.cuni 3957    e. cmpt 4207   ` cfv 5394   Topctop 16881   clsccl 17005   limPtclp 17121
This theorem is referenced by:  islp  17127  lpsscls  17128
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-top 16886  df-cld 17006  df-cls 17008  df-lp 17123
  Copyright terms: Public domain W3C validator