Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcvat3 Unicode version

Theorem lsatcvat3 29167
Description: A condition implying that a certain subspace is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 23747 analog.) (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
lsatcvat3.s  |-  S  =  ( LSubSp `  W )
lsatcvat3.p  |-  .(+)  =  (
LSSum `  W )
lsatcvat3.a  |-  A  =  (LSAtoms `  W )
lsatcvat3.w  |-  ( ph  ->  W  e.  LVec )
lsatcvat3.u  |-  ( ph  ->  U  e.  S )
lsatcvat3.q  |-  ( ph  ->  Q  e.  A )
lsatcvat3.r  |-  ( ph  ->  R  e.  A )
lsatcvat3.n  |-  ( ph  ->  Q  =/=  R )
lsatcvat3.m  |-  ( ph  ->  -.  R  C_  U
)
lsatcvat3.l  |-  ( ph  ->  Q  C_  ( U  .(+) 
R ) )
Assertion
Ref Expression
lsatcvat3  |-  ( ph  ->  ( U  i^i  ( Q  .(+)  R ) )  e.  A )

Proof of Theorem lsatcvat3
StepHypRef Expression
1 lsatcvat3.s . 2  |-  S  =  ( LSubSp `  W )
2 lsatcvat3.p . 2  |-  .(+)  =  (
LSSum `  W )
3 lsatcvat3.a . 2  |-  A  =  (LSAtoms `  W )
4 eqid 2387 . 2  |-  (  <oLL  `  W
)  =  (  <oLL  `  W
)
5 lsatcvat3.w . 2  |-  ( ph  ->  W  e.  LVec )
6 lveclmod 16105 . . . 4  |-  ( W  e.  LVec  ->  W  e. 
LMod )
75, 6syl 16 . . 3  |-  ( ph  ->  W  e.  LMod )
8 lsatcvat3.u . . 3  |-  ( ph  ->  U  e.  S )
9 lsatcvat3.q . . . . 5  |-  ( ph  ->  Q  e.  A )
101, 3, 7, 9lsatlssel 29112 . . . 4  |-  ( ph  ->  Q  e.  S )
11 lsatcvat3.r . . . . 5  |-  ( ph  ->  R  e.  A )
121, 3, 7, 11lsatlssel 29112 . . . 4  |-  ( ph  ->  R  e.  S )
131, 2lsmcl 16082 . . . 4  |-  ( ( W  e.  LMod  /\  Q  e.  S  /\  R  e.  S )  ->  ( Q  .(+)  R )  e.  S )
147, 10, 12, 13syl3anc 1184 . . 3  |-  ( ph  ->  ( Q  .(+)  R )  e.  S )
151lssincl 15968 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  ( Q  .(+)  R )  e.  S )  ->  ( U  i^i  ( Q  .(+)  R ) )  e.  S
)
167, 8, 14, 15syl3anc 1184 . 2  |-  ( ph  ->  ( U  i^i  ( Q  .(+)  R ) )  e.  S )
17 lsatcvat3.n . 2  |-  ( ph  ->  Q  =/=  R )
18 lsatcvat3.m . . . . 5  |-  ( ph  ->  -.  R  C_  U
)
191, 2, 3, 4, 5, 8, 11lcv1 29156 . . . . 5  |-  ( ph  ->  ( -.  R  C_  U 
<->  U (  <oLL  `  W ) ( U  .(+)  R ) ) )
2018, 19mpbid 202 . . . 4  |-  ( ph  ->  U (  <oLL  `  W ) ( U  .(+)  R ) )
21 lmodabl 15918 . . . . . . . . . . 11  |-  ( W  e.  LMod  ->  W  e. 
Abel )
227, 21syl 16 . . . . . . . . . 10  |-  ( ph  ->  W  e.  Abel )
231lsssssubg 15961 . . . . . . . . . . . 12  |-  ( W  e.  LMod  ->  S  C_  (SubGrp `  W ) )
247, 23syl 16 . . . . . . . . . . 11  |-  ( ph  ->  S  C_  (SubGrp `  W
) )
2524, 10sseldd 3292 . . . . . . . . . 10  |-  ( ph  ->  Q  e.  (SubGrp `  W ) )
2624, 12sseldd 3292 . . . . . . . . . 10  |-  ( ph  ->  R  e.  (SubGrp `  W ) )
272lsmcom 15400 . . . . . . . . . 10  |-  ( ( W  e.  Abel  /\  Q  e.  (SubGrp `  W )  /\  R  e.  (SubGrp `  W ) )  -> 
( Q  .(+)  R )  =  ( R  .(+)  Q ) )
2822, 25, 26, 27syl3anc 1184 . . . . . . . . 9  |-  ( ph  ->  ( Q  .(+)  R )  =  ( R  .(+)  Q ) )
2928oveq2d 6036 . . . . . . . 8  |-  ( ph  ->  ( U  .(+)  ( Q 
.(+)  R ) )  =  ( U  .(+)  ( R 
.(+)  Q ) ) )
3024, 8sseldd 3292 . . . . . . . . 9  |-  ( ph  ->  U  e.  (SubGrp `  W ) )
312lsmass 15229 . . . . . . . . 9  |-  ( ( U  e.  (SubGrp `  W )  /\  R  e.  (SubGrp `  W )  /\  Q  e.  (SubGrp `  W ) )  -> 
( ( U  .(+)  R )  .(+)  Q )  =  ( U  .(+)  ( R  .(+)  Q )
) )
3230, 26, 25, 31syl3anc 1184 . . . . . . . 8  |-  ( ph  ->  ( ( U  .(+)  R )  .(+)  Q )  =  ( U  .(+)  ( R  .(+)  Q )
) )
3329, 32eqtr4d 2422 . . . . . . 7  |-  ( ph  ->  ( U  .(+)  ( Q 
.(+)  R ) )  =  ( ( U  .(+)  R )  .(+)  Q )
)
341, 2lsmcl 16082 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  R  e.  S )  ->  ( U  .(+)  R )  e.  S )
357, 8, 12, 34syl3anc 1184 . . . . . . . . 9  |-  ( ph  ->  ( U  .(+)  R )  e.  S )
3624, 35sseldd 3292 . . . . . . . 8  |-  ( ph  ->  ( U  .(+)  R )  e.  (SubGrp `  W
) )
37 lsatcvat3.l . . . . . . . 8  |-  ( ph  ->  Q  C_  ( U  .(+) 
R ) )
382lsmless2 15221 . . . . . . . 8  |-  ( ( ( U  .(+)  R )  e.  (SubGrp `  W
)  /\  ( U  .(+) 
R )  e.  (SubGrp `  W )  /\  Q  C_  ( U  .(+)  R ) )  ->  ( ( U  .(+)  R )  .(+)  Q )  C_  ( ( U  .(+)  R )  .(+)  ( U  .(+)  R )
) )
3936, 36, 37, 38syl3anc 1184 . . . . . . 7  |-  ( ph  ->  ( ( U  .(+)  R )  .(+)  Q )  C_  ( ( U  .(+)  R )  .(+)  ( U  .(+) 
R ) ) )
4033, 39eqsstrd 3325 . . . . . 6  |-  ( ph  ->  ( U  .(+)  ( Q 
.(+)  R ) )  C_  ( ( U  .(+)  R )  .(+)  ( U  .(+) 
R ) ) )
412lsmidm 15223 . . . . . . 7  |-  ( ( U  .(+)  R )  e.  (SubGrp `  W )  ->  ( ( U  .(+)  R )  .(+)  ( U  .(+) 
R ) )  =  ( U  .(+)  R ) )
4236, 41syl 16 . . . . . 6  |-  ( ph  ->  ( ( U  .(+)  R )  .(+)  ( U  .(+) 
R ) )  =  ( U  .(+)  R ) )
4340, 42sseqtrd 3327 . . . . 5  |-  ( ph  ->  ( U  .(+)  ( Q 
.(+)  R ) )  C_  ( U  .(+)  R ) )
4424, 14sseldd 3292 . . . . . 6  |-  ( ph  ->  ( Q  .(+)  R )  e.  (SubGrp `  W
) )
452lsmub2 15218 . . . . . . 7  |-  ( ( Q  e.  (SubGrp `  W )  /\  R  e.  (SubGrp `  W )
)  ->  R  C_  ( Q  .(+)  R ) )
4625, 26, 45syl2anc 643 . . . . . 6  |-  ( ph  ->  R  C_  ( Q  .(+) 
R ) )
472lsmless2 15221 . . . . . 6  |-  ( ( U  e.  (SubGrp `  W )  /\  ( Q  .(+)  R )  e.  (SubGrp `  W )  /\  R  C_  ( Q 
.(+)  R ) )  -> 
( U  .(+)  R ) 
C_  ( U  .(+)  ( Q  .(+)  R )
) )
4830, 44, 46, 47syl3anc 1184 . . . . 5  |-  ( ph  ->  ( U  .(+)  R ) 
C_  ( U  .(+)  ( Q  .(+)  R )
) )
4943, 48eqssd 3308 . . . 4  |-  ( ph  ->  ( U  .(+)  ( Q 
.(+)  R ) )  =  ( U  .(+)  R ) )
5020, 49breqtrrd 4179 . . 3  |-  ( ph  ->  U (  <oLL  `  W ) ( U  .(+)  ( Q 
.(+)  R ) ) )
511, 2, 4, 7, 8, 14, 50lcvexchlem4 29152 . 2  |-  ( ph  ->  ( U  i^i  ( Q  .(+)  R ) ) (  <oLL  `  W ) ( Q  .(+)  R )
)
521, 2, 3, 4, 5, 16, 9, 11, 17, 51lsatcvat2 29166 1  |-  ( ph  ->  ( U  i^i  ( Q  .(+)  R ) )  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1649    e. wcel 1717    =/= wne 2550    i^i cin 3262    C_ wss 3263   class class class wbr 4153   ` cfv 5394  (class class class)co 6020  SubGrpcsubg 14865   LSSumclsm 15195   Abelcabel 15340   LModclmod 15877   LSubSpclss 15935   LVecclvec 16101  LSAtomsclsa 29089    <oLL clcv 29133
This theorem is referenced by:  l1cvat  29170
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-tpos 6415  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-2 9990  df-3 9991  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-0g 13654  df-mre 13738  df-mrc 13739  df-acs 13741  df-mnd 14617  df-submnd 14666  df-grp 14739  df-minusg 14740  df-sbg 14741  df-subg 14868  df-cntz 15043  df-oppg 15069  df-lsm 15197  df-cmn 15341  df-abl 15342  df-mgp 15576  df-rng 15590  df-ur 15592  df-oppr 15655  df-dvdsr 15673  df-unit 15674  df-invr 15704  df-drng 15764  df-lmod 15879  df-lss 15936  df-lsp 15975  df-lvec 16102  df-lsatoms 29091  df-lcv 29134
  Copyright terms: Public domain W3C validator