Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcvat3 Unicode version

Theorem lsatcvat3 28492
Description: A condition implying that a certain subspace is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 22937 analog.) (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
lsatcvat3.s  |-  S  =  ( LSubSp `  W )
lsatcvat3.p  |-  .(+)  =  (
LSSum `  W )
lsatcvat3.a  |-  A  =  (LSAtoms `  W )
lsatcvat3.w  |-  ( ph  ->  W  e.  LVec )
lsatcvat3.u  |-  ( ph  ->  U  e.  S )
lsatcvat3.q  |-  ( ph  ->  Q  e.  A )
lsatcvat3.r  |-  ( ph  ->  R  e.  A )
lsatcvat3.n  |-  ( ph  ->  Q  =/=  R )
lsatcvat3.m  |-  ( ph  ->  -.  R  C_  U
)
lsatcvat3.l  |-  ( ph  ->  Q  C_  ( U  .(+) 
R ) )
Assertion
Ref Expression
lsatcvat3  |-  ( ph  ->  ( U  i^i  ( Q  .(+)  R ) )  e.  A )

Proof of Theorem lsatcvat3
StepHypRef Expression
1 lsatcvat3.s . 2  |-  S  =  ( LSubSp `  W )
2 lsatcvat3.p . 2  |-  .(+)  =  (
LSSum `  W )
3 lsatcvat3.a . 2  |-  A  =  (LSAtoms `  W )
4 eqid 2258 . 2  |-  (  <oLL  `  W
)  =  (  <oLL  `  W
)
5 lsatcvat3.w . 2  |-  ( ph  ->  W  e.  LVec )
6 lveclmod 15822 . . . 4  |-  ( W  e.  LVec  ->  W  e. 
LMod )
75, 6syl 17 . . 3  |-  ( ph  ->  W  e.  LMod )
8 lsatcvat3.u . . 3  |-  ( ph  ->  U  e.  S )
9 lsatcvat3.q . . . . 5  |-  ( ph  ->  Q  e.  A )
101, 3, 7, 9lsatlssel 28437 . . . 4  |-  ( ph  ->  Q  e.  S )
11 lsatcvat3.r . . . . 5  |-  ( ph  ->  R  e.  A )
121, 3, 7, 11lsatlssel 28437 . . . 4  |-  ( ph  ->  R  e.  S )
131, 2lsmcl 15799 . . . 4  |-  ( ( W  e.  LMod  /\  Q  e.  S  /\  R  e.  S )  ->  ( Q  .(+)  R )  e.  S )
147, 10, 12, 13syl3anc 1187 . . 3  |-  ( ph  ->  ( Q  .(+)  R )  e.  S )
151lssincl 15685 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  ( Q  .(+)  R )  e.  S )  ->  ( U  i^i  ( Q  .(+)  R ) )  e.  S
)
167, 8, 14, 15syl3anc 1187 . 2  |-  ( ph  ->  ( U  i^i  ( Q  .(+)  R ) )  e.  S )
17 lsatcvat3.n . 2  |-  ( ph  ->  Q  =/=  R )
18 lsatcvat3.m . . . . 5  |-  ( ph  ->  -.  R  C_  U
)
191, 2, 3, 4, 5, 8, 11lcv1 28481 . . . . 5  |-  ( ph  ->  ( -.  R  C_  U 
<->  U (  <oLL  `  W ) ( U  .(+)  R ) ) )
2018, 19mpbid 203 . . . 4  |-  ( ph  ->  U (  <oLL  `  W ) ( U  .(+)  R ) )
21 lmodabl 15635 . . . . . . . . . . 11  |-  ( W  e.  LMod  ->  W  e. 
Abel )
227, 21syl 17 . . . . . . . . . 10  |-  ( ph  ->  W  e.  Abel )
231lsssssubg 15678 . . . . . . . . . . . 12  |-  ( W  e.  LMod  ->  S  C_  (SubGrp `  W ) )
247, 23syl 17 . . . . . . . . . . 11  |-  ( ph  ->  S  C_  (SubGrp `  W
) )
2524, 10sseldd 3156 . . . . . . . . . 10  |-  ( ph  ->  Q  e.  (SubGrp `  W ) )
2624, 12sseldd 3156 . . . . . . . . . 10  |-  ( ph  ->  R  e.  (SubGrp `  W ) )
272lsmcom 15113 . . . . . . . . . 10  |-  ( ( W  e.  Abel  /\  Q  e.  (SubGrp `  W )  /\  R  e.  (SubGrp `  W ) )  -> 
( Q  .(+)  R )  =  ( R  .(+)  Q ) )
2822, 25, 26, 27syl3anc 1187 . . . . . . . . 9  |-  ( ph  ->  ( Q  .(+)  R )  =  ( R  .(+)  Q ) )
2928oveq2d 5808 . . . . . . . 8  |-  ( ph  ->  ( U  .(+)  ( Q 
.(+)  R ) )  =  ( U  .(+)  ( R 
.(+)  Q ) ) )
3024, 8sseldd 3156 . . . . . . . . 9  |-  ( ph  ->  U  e.  (SubGrp `  W ) )
312lsmass 14942 . . . . . . . . 9  |-  ( ( U  e.  (SubGrp `  W )  /\  R  e.  (SubGrp `  W )  /\  Q  e.  (SubGrp `  W ) )  -> 
( ( U  .(+)  R )  .(+)  Q )  =  ( U  .(+)  ( R  .(+)  Q )
) )
3230, 26, 25, 31syl3anc 1187 . . . . . . . 8  |-  ( ph  ->  ( ( U  .(+)  R )  .(+)  Q )  =  ( U  .(+)  ( R  .(+)  Q )
) )
3329, 32eqtr4d 2293 . . . . . . 7  |-  ( ph  ->  ( U  .(+)  ( Q 
.(+)  R ) )  =  ( ( U  .(+)  R )  .(+)  Q )
)
341, 2lsmcl 15799 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  R  e.  S )  ->  ( U  .(+)  R )  e.  S )
357, 8, 12, 34syl3anc 1187 . . . . . . . . 9  |-  ( ph  ->  ( U  .(+)  R )  e.  S )
3624, 35sseldd 3156 . . . . . . . 8  |-  ( ph  ->  ( U  .(+)  R )  e.  (SubGrp `  W
) )
37 lsatcvat3.l . . . . . . . 8  |-  ( ph  ->  Q  C_  ( U  .(+) 
R ) )
382lsmless2 14934 . . . . . . . 8  |-  ( ( ( U  .(+)  R )  e.  (SubGrp `  W
)  /\  ( U  .(+) 
R )  e.  (SubGrp `  W )  /\  Q  C_  ( U  .(+)  R ) )  ->  ( ( U  .(+)  R )  .(+)  Q )  C_  ( ( U  .(+)  R )  .(+)  ( U  .(+)  R )
) )
3936, 36, 37, 38syl3anc 1187 . . . . . . 7  |-  ( ph  ->  ( ( U  .(+)  R )  .(+)  Q )  C_  ( ( U  .(+)  R )  .(+)  ( U  .(+) 
R ) ) )
4033, 39eqsstrd 3187 . . . . . 6  |-  ( ph  ->  ( U  .(+)  ( Q 
.(+)  R ) )  C_  ( ( U  .(+)  R )  .(+)  ( U  .(+) 
R ) ) )
412lsmidm 14936 . . . . . . 7  |-  ( ( U  .(+)  R )  e.  (SubGrp `  W )  ->  ( ( U  .(+)  R )  .(+)  ( U  .(+) 
R ) )  =  ( U  .(+)  R ) )
4236, 41syl 17 . . . . . 6  |-  ( ph  ->  ( ( U  .(+)  R )  .(+)  ( U  .(+) 
R ) )  =  ( U  .(+)  R ) )
4340, 42sseqtrd 3189 . . . . 5  |-  ( ph  ->  ( U  .(+)  ( Q 
.(+)  R ) )  C_  ( U  .(+)  R ) )
4424, 14sseldd 3156 . . . . . 6  |-  ( ph  ->  ( Q  .(+)  R )  e.  (SubGrp `  W
) )
452lsmub2 14931 . . . . . . 7  |-  ( ( Q  e.  (SubGrp `  W )  /\  R  e.  (SubGrp `  W )
)  ->  R  C_  ( Q  .(+)  R ) )
4625, 26, 45syl2anc 645 . . . . . 6  |-  ( ph  ->  R  C_  ( Q  .(+) 
R ) )
472lsmless2 14934 . . . . . 6  |-  ( ( U  e.  (SubGrp `  W )  /\  ( Q  .(+)  R )  e.  (SubGrp `  W )  /\  R  C_  ( Q 
.(+)  R ) )  -> 
( U  .(+)  R ) 
C_  ( U  .(+)  ( Q  .(+)  R )
) )
4830, 44, 46, 47syl3anc 1187 . . . . 5  |-  ( ph  ->  ( U  .(+)  R ) 
C_  ( U  .(+)  ( Q  .(+)  R )
) )
4943, 48eqssd 3171 . . . 4  |-  ( ph  ->  ( U  .(+)  ( Q 
.(+)  R ) )  =  ( U  .(+)  R ) )
5020, 49breqtrrd 4023 . . 3  |-  ( ph  ->  U (  <oLL  `  W ) ( U  .(+)  ( Q 
.(+)  R ) ) )
511, 2, 4, 7, 8, 14, 50lcvexchlem4 28477 . 2  |-  ( ph  ->  ( U  i^i  ( Q  .(+)  R ) ) (  <oLL  `  W ) ( Q  .(+)  R )
)
521, 2, 3, 4, 5, 16, 9, 11, 17, 51lsatcvat2 28491 1  |-  ( ph  ->  ( U  i^i  ( Q  .(+)  R ) )  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    = wceq 1619    e. wcel 1621    =/= wne 2421    i^i cin 3126    C_ wss 3127   class class class wbr 3997   ` cfv 4673  (class class class)co 5792  SubGrpcsubg 14578   LSSumclsm 14908   Abelcabel 15053   LModclmod 15590   LSubSpclss 15652   LVecclvec 15818  LSAtomsclsa 28414    <oLL clcv 28458
This theorem is referenced by:  l1cvat  28495
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-tpos 6168  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-oadd 6451  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-n 9715  df-2 9772  df-3 9773  df-ndx 13114  df-slot 13115  df-base 13116  df-sets 13117  df-ress 13118  df-plusg 13184  df-mulr 13185  df-0g 13367  df-mre 13451  df-mrc 13452  df-acs 13454  df-mnd 14330  df-submnd 14379  df-grp 14452  df-minusg 14453  df-sbg 14454  df-subg 14581  df-cntz 14756  df-oppg 14782  df-lsm 14910  df-cmn 15054  df-abl 15055  df-mgp 15289  df-ring 15303  df-ur 15305  df-oppr 15368  df-dvdsr 15386  df-unit 15387  df-invr 15417  df-drng 15477  df-lmod 15592  df-lss 15653  df-lsp 15692  df-lvec 15819  df-lsatoms 28416  df-lcv 28459
  Copyright terms: Public domain W3C validator