Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatexch Structured version   Unicode version

Theorem lsatexch 29915
Description: The atom exchange property. Proposition 1(i) of [Kalmbach] p. 140. A version of this theorem was originally proved by Hermann Grassmann in 1862. (atexch 23889 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatexch.s  |-  S  =  ( LSubSp `  W )
lsatexch.p  |-  .(+)  =  (
LSSum `  W )
lsatexch.o  |-  .0.  =  ( 0g `  W )
lsatexch.a  |-  A  =  (LSAtoms `  W )
lsatexch.w  |-  ( ph  ->  W  e.  LVec )
lsatexch.u  |-  ( ph  ->  U  e.  S )
lsatexch.q  |-  ( ph  ->  Q  e.  A )
lsatexch.r  |-  ( ph  ->  R  e.  A )
lsatexch.l  |-  ( ph  ->  Q  C_  ( U  .(+) 
R ) )
lsatexch.z  |-  ( ph  ->  ( U  i^i  Q
)  =  {  .0.  } )
Assertion
Ref Expression
lsatexch  |-  ( ph  ->  R  C_  ( U  .(+) 
Q ) )

Proof of Theorem lsatexch
StepHypRef Expression
1 lsatexch.w . . . . . 6  |-  ( ph  ->  W  e.  LVec )
2 lveclmod 16183 . . . . . 6  |-  ( W  e.  LVec  ->  W  e. 
LMod )
31, 2syl 16 . . . . 5  |-  ( ph  ->  W  e.  LMod )
4 lsatexch.s . . . . . 6  |-  S  =  ( LSubSp `  W )
54lsssssubg 16039 . . . . 5  |-  ( W  e.  LMod  ->  S  C_  (SubGrp `  W ) )
63, 5syl 16 . . . 4  |-  ( ph  ->  S  C_  (SubGrp `  W
) )
7 lsatexch.u . . . 4  |-  ( ph  ->  U  e.  S )
86, 7sseldd 3351 . . 3  |-  ( ph  ->  U  e.  (SubGrp `  W ) )
9 lsatexch.a . . . . 5  |-  A  =  (LSAtoms `  W )
10 lsatexch.r . . . . 5  |-  ( ph  ->  R  e.  A )
114, 9, 3, 10lsatlssel 29869 . . . 4  |-  ( ph  ->  R  e.  S )
126, 11sseldd 3351 . . 3  |-  ( ph  ->  R  e.  (SubGrp `  W ) )
13 lsatexch.p . . . 4  |-  .(+)  =  (
LSSum `  W )
1413lsmub2 15296 . . 3  |-  ( ( U  e.  (SubGrp `  W )  /\  R  e.  (SubGrp `  W )
)  ->  R  C_  ( U  .(+)  R ) )
158, 12, 14syl2anc 644 . 2  |-  ( ph  ->  R  C_  ( U  .(+) 
R ) )
16 eqid 2438 . . 3  |-  (  <oLL  `  W
)  =  (  <oLL  `  W
)
174, 13lsmcl 16160 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  R  e.  S )  ->  ( U  .(+)  R )  e.  S )
183, 7, 11, 17syl3anc 1185 . . 3  |-  ( ph  ->  ( U  .(+)  R )  e.  S )
19 lsatexch.q . . . . 5  |-  ( ph  ->  Q  e.  A )
204, 9, 3, 19lsatlssel 29869 . . . 4  |-  ( ph  ->  Q  e.  S )
214, 13lsmcl 16160 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  Q  e.  S )  ->  ( U  .(+)  Q )  e.  S )
223, 7, 20, 21syl3anc 1185 . . 3  |-  ( ph  ->  ( U  .(+)  Q )  e.  S )
23 lsatexch.z . . . . . . 7  |-  ( ph  ->  ( U  i^i  Q
)  =  {  .0.  } )
24 lsatexch.o . . . . . . . 8  |-  .0.  =  ( 0g `  W )
254, 13, 24, 9, 16, 1, 7, 19lcvp 29912 . . . . . . 7  |-  ( ph  ->  ( ( U  i^i  Q )  =  {  .0.  }  <-> 
U (  <oLL  `  W ) ( U  .(+)  Q ) ) )
2623, 25mpbid 203 . . . . . 6  |-  ( ph  ->  U (  <oLL  `  W ) ( U  .(+)  Q ) )
274, 16, 1, 7, 22, 26lcvpss 29896 . . . . 5  |-  ( ph  ->  U  C.  ( U 
.(+)  Q ) )
2813lsmub1 15295 . . . . . . 7  |-  ( ( U  e.  (SubGrp `  W )  /\  R  e.  (SubGrp `  W )
)  ->  U  C_  ( U  .(+)  R ) )
298, 12, 28syl2anc 644 . . . . . 6  |-  ( ph  ->  U  C_  ( U  .(+) 
R ) )
30 lsatexch.l . . . . . 6  |-  ( ph  ->  Q  C_  ( U  .(+) 
R ) )
316, 20sseldd 3351 . . . . . . 7  |-  ( ph  ->  Q  e.  (SubGrp `  W ) )
326, 18sseldd 3351 . . . . . . 7  |-  ( ph  ->  ( U  .(+)  R )  e.  (SubGrp `  W
) )
3313lsmlub 15302 . . . . . . 7  |-  ( ( U  e.  (SubGrp `  W )  /\  Q  e.  (SubGrp `  W )  /\  ( U  .(+)  R )  e.  (SubGrp `  W
) )  ->  (
( U  C_  ( U  .(+)  R )  /\  Q  C_  ( U  .(+)  R ) )  <->  ( U  .(+) 
Q )  C_  ( U  .(+)  R ) ) )
348, 31, 32, 33syl3anc 1185 . . . . . 6  |-  ( ph  ->  ( ( U  C_  ( U  .(+)  R )  /\  Q  C_  ( U  .(+)  R ) )  <-> 
( U  .(+)  Q ) 
C_  ( U  .(+)  R ) ) )
3529, 30, 34mpbi2and 889 . . . . 5  |-  ( ph  ->  ( U  .(+)  Q ) 
C_  ( U  .(+)  R ) )
3627, 35psssstrd 3458 . . . 4  |-  ( ph  ->  U  C.  ( U 
.(+)  R ) )
374, 13, 9, 16, 1, 7, 10lcv2 29914 . . . 4  |-  ( ph  ->  ( U  C.  ( U  .(+)  R )  <->  U (  <oLL  `  W ) ( U 
.(+)  R ) ) )
3836, 37mpbid 203 . . 3  |-  ( ph  ->  U (  <oLL  `  W ) ( U  .(+)  R ) )
394, 16, 1, 7, 18, 22, 38, 27, 35lcvnbtwn2 29899 . 2  |-  ( ph  ->  ( U  .(+)  Q )  =  ( U  .(+)  R ) )
4015, 39sseqtr4d 3387 1  |-  ( ph  ->  R  C_  ( U  .(+) 
Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    i^i cin 3321    C_ wss 3322    C. wpss 3323   {csn 3816   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   0gc0g 13728  SubGrpcsubg 14943   LSSumclsm 15273   LModclmod 15955   LSubSpclss 16013   LVecclvec 16179  LSAtomsclsa 29846    <oLL clcv 29890
This theorem is referenced by:  lsatexch1  29918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-tpos 6482  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-2 10063  df-3 10064  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-0g 13732  df-mre 13816  df-mrc 13817  df-acs 13819  df-mnd 14695  df-submnd 14744  df-grp 14817  df-minusg 14818  df-sbg 14819  df-subg 14946  df-cntz 15121  df-oppg 15147  df-lsm 15275  df-cmn 15419  df-abl 15420  df-mgp 15654  df-rng 15668  df-ur 15670  df-oppr 15733  df-dvdsr 15751  df-unit 15752  df-invr 15782  df-drng 15842  df-lmod 15957  df-lss 16014  df-lsp 16053  df-lvec 16180  df-lsatoms 29848  df-lcv 29891
  Copyright terms: Public domain W3C validator