Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem1 Unicode version

Theorem lshpkrlem1 29922
Description: Lemma for lshpkrex 29930. The value of tentative functional  G is zero iff its argument belongs to hyperplane  U. (Contributed by NM, 14-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v  |-  V  =  ( Base `  W
)
lshpkrlem.a  |-  .+  =  ( +g  `  W )
lshpkrlem.n  |-  N  =  ( LSpan `  W )
lshpkrlem.p  |-  .(+)  =  (
LSSum `  W )
lshpkrlem.h  |-  H  =  (LSHyp `  W )
lshpkrlem.w  |-  ( ph  ->  W  e.  LVec )
lshpkrlem.u  |-  ( ph  ->  U  e.  H )
lshpkrlem.z  |-  ( ph  ->  Z  e.  V )
lshpkrlem.x  |-  ( ph  ->  X  e.  V )
lshpkrlem.e  |-  ( ph  ->  ( U  .(+)  ( N `
 { Z }
) )  =  V )
lshpkrlem.d  |-  D  =  (Scalar `  W )
lshpkrlem.k  |-  K  =  ( Base `  D
)
lshpkrlem.t  |-  .x.  =  ( .s `  W )
lshpkrlem.o  |-  .0.  =  ( 0g `  D )
lshpkrlem.g  |-  G  =  ( x  e.  V  |->  ( iota_ k  e.  K E. y  e.  U  x  =  ( y  .+  ( k  .x.  Z
) ) ) )
Assertion
Ref Expression
lshpkrlem1  |-  ( ph  ->  ( X  e.  U  <->  ( G `  X )  =  .0.  ) )
Distinct variable groups:    x, k,
y,  .+    k, K, x    .0. , k    .x. , k, x, y    U, k, x, y    x, V    k, X, x, y   
k, Z, x, y
Allowed substitution hints:    ph( x, y, k)    D( x, y, k)    .(+) (
x, y, k)    G( x, y, k)    H( x, y, k)    K( y)    N( x, y, k)    V( y, k)    W( x, y, k)    .0. ( x, y)

Proof of Theorem lshpkrlem1
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 lshpkrlem.w . . . . 5  |-  ( ph  ->  W  e.  LVec )
2 lveclmod 15875 . . . . 5  |-  ( W  e.  LVec  ->  W  e. 
LMod )
31, 2syl 15 . . . 4  |-  ( ph  ->  W  e.  LMod )
4 lshpkrlem.d . . . . 5  |-  D  =  (Scalar `  W )
54lmodfgrp 15652 . . . 4  |-  ( W  e.  LMod  ->  D  e. 
Grp )
6 lshpkrlem.k . . . . 5  |-  K  =  ( Base `  D
)
7 lshpkrlem.o . . . . 5  |-  .0.  =  ( 0g `  D )
86, 7grpidcl 14526 . . . 4  |-  ( D  e.  Grp  ->  .0.  e.  K )
93, 5, 83syl 18 . . 3  |-  ( ph  ->  .0.  e.  K )
10 lshpkrlem.v . . . 4  |-  V  =  ( Base `  W
)
11 lshpkrlem.a . . . 4  |-  .+  =  ( +g  `  W )
12 lshpkrlem.n . . . 4  |-  N  =  ( LSpan `  W )
13 lshpkrlem.p . . . 4  |-  .(+)  =  (
LSSum `  W )
14 lshpkrlem.h . . . 4  |-  H  =  (LSHyp `  W )
15 lshpkrlem.u . . . 4  |-  ( ph  ->  U  e.  H )
16 lshpkrlem.z . . . 4  |-  ( ph  ->  Z  e.  V )
17 lshpkrlem.x . . . 4  |-  ( ph  ->  X  e.  V )
18 lshpkrlem.e . . . 4  |-  ( ph  ->  ( U  .(+)  ( N `
 { Z }
) )  =  V )
19 lshpkrlem.t . . . 4  |-  .x.  =  ( .s `  W )
2010, 11, 12, 13, 14, 1, 15, 16, 17, 18, 4, 6, 19lshpsmreu 29921 . . 3  |-  ( ph  ->  E! k  e.  K  E. b  e.  U  X  =  ( b  .+  ( k  .x.  Z
) ) )
21 oveq1 5881 . . . . . . 7  |-  ( k  =  .0.  ->  (
k  .x.  Z )  =  (  .0.  .x.  Z
) )
2221oveq2d 5890 . . . . . 6  |-  ( k  =  .0.  ->  (
b  .+  ( k  .x.  Z ) )  =  ( b  .+  (  .0.  .x.  Z ) ) )
2322eqeq2d 2307 . . . . 5  |-  ( k  =  .0.  ->  ( X  =  ( b  .+  ( k  .x.  Z
) )  <->  X  =  ( b  .+  (  .0.  .x.  Z ) ) ) )
2423rexbidv 2577 . . . 4  |-  ( k  =  .0.  ->  ( E. b  e.  U  X  =  ( b  .+  ( k  .x.  Z
) )  <->  E. b  e.  U  X  =  ( b  .+  (  .0.  .x.  Z ) ) ) )
2524riota2 6343 . . 3  |-  ( (  .0.  e.  K  /\  E! k  e.  K  E. b  e.  U  X  =  ( b  .+  ( k  .x.  Z
) ) )  -> 
( E. b  e.  U  X  =  ( b  .+  (  .0. 
.x.  Z ) )  <-> 
( iota_ k  e.  K E. b  e.  U  X  =  ( b  .+  ( k  .x.  Z
) ) )  =  .0.  ) )
269, 20, 25syl2anc 642 . 2  |-  ( ph  ->  ( E. b  e.  U  X  =  ( b  .+  (  .0. 
.x.  Z ) )  <-> 
( iota_ k  e.  K E. b  e.  U  X  =  ( b  .+  ( k  .x.  Z
) ) )  =  .0.  ) )
27 simpr 447 . . . . . 6  |-  ( (
ph  /\  X  e.  U )  ->  X  e.  U )
28 eqidd 2297 . . . . . 6  |-  ( (
ph  /\  X  e.  U )  ->  X  =  X )
29 eqeq2 2305 . . . . . . 7  |-  ( b  =  X  ->  ( X  =  b  <->  X  =  X ) )
3029rspcev 2897 . . . . . 6  |-  ( ( X  e.  U  /\  X  =  X )  ->  E. b  e.  U  X  =  b )
3127, 28, 30syl2anc 642 . . . . 5  |-  ( (
ph  /\  X  e.  U )  ->  E. b  e.  U  X  =  b )
3231ex 423 . . . 4  |-  ( ph  ->  ( X  e.  U  ->  E. b  e.  U  X  =  b )
)
33 eleq1a 2365 . . . . . 6  |-  ( b  e.  U  ->  ( X  =  b  ->  X  e.  U ) )
3433a1i 10 . . . . 5  |-  ( ph  ->  ( b  e.  U  ->  ( X  =  b  ->  X  e.  U
) ) )
3534rexlimdv 2679 . . . 4  |-  ( ph  ->  ( E. b  e.  U  X  =  b  ->  X  e.  U
) )
3632, 35impbid 183 . . 3  |-  ( ph  ->  ( X  e.  U  <->  E. b  e.  U  X  =  b ) )
37 eqid 2296 . . . . . . . . . . 11  |-  ( 0g
`  W )  =  ( 0g `  W
)
3810, 4, 19, 7, 37lmod0vs 15679 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  Z  e.  V )  ->  (  .0.  .x.  Z )  =  ( 0g `  W
) )
393, 16, 38syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  (  .0.  .x.  Z
)  =  ( 0g
`  W ) )
4039adantr 451 . . . . . . . 8  |-  ( (
ph  /\  b  e.  U )  ->  (  .0.  .x.  Z )  =  ( 0g `  W
) )
4140oveq2d 5890 . . . . . . 7  |-  ( (
ph  /\  b  e.  U )  ->  (
b  .+  (  .0.  .x. 
Z ) )  =  ( b  .+  ( 0g `  W ) ) )
421adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  b  e.  U )  ->  W  e.  LVec )
4342, 2syl 15 . . . . . . . 8  |-  ( (
ph  /\  b  e.  U )  ->  W  e.  LMod )
44 eqid 2296 . . . . . . . . . 10  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
4544, 14, 3, 15lshplss 29793 . . . . . . . . 9  |-  ( ph  ->  U  e.  ( LSubSp `  W ) )
4610, 44lssel 15711 . . . . . . . . 9  |-  ( ( U  e.  ( LSubSp `  W )  /\  b  e.  U )  ->  b  e.  V )
4745, 46sylan 457 . . . . . . . 8  |-  ( (
ph  /\  b  e.  U )  ->  b  e.  V )
4810, 11, 37lmod0vrid 15677 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  b  e.  V )  ->  (
b  .+  ( 0g `  W ) )  =  b )
4943, 47, 48syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  b  e.  U )  ->  (
b  .+  ( 0g `  W ) )  =  b )
5041, 49eqtrd 2328 . . . . . 6  |-  ( (
ph  /\  b  e.  U )  ->  (
b  .+  (  .0.  .x. 
Z ) )  =  b )
5150eqeq2d 2307 . . . . 5  |-  ( (
ph  /\  b  e.  U )  ->  ( X  =  ( b  .+  (  .0.  .x.  Z
) )  <->  X  =  b ) )
5251bicomd 192 . . . 4  |-  ( (
ph  /\  b  e.  U )  ->  ( X  =  b  <->  X  =  ( b  .+  (  .0.  .x.  Z ) ) ) )
5352rexbidva 2573 . . 3  |-  ( ph  ->  ( E. b  e.  U  X  =  b  <->  E. b  e.  U  X  =  ( b  .+  (  .0.  .x.  Z
) ) ) )
5436, 53bitrd 244 . 2  |-  ( ph  ->  ( X  e.  U  <->  E. b  e.  U  X  =  ( b  .+  (  .0.  .x.  Z )
) ) )
55 eqeq1 2302 . . . . . . . 8  |-  ( x  =  X  ->  (
x  =  ( y 
.+  ( k  .x.  Z ) )  <->  X  =  ( y  .+  (
k  .x.  Z )
) ) )
5655rexbidv 2577 . . . . . . 7  |-  ( x  =  X  ->  ( E. y  e.  U  x  =  ( y  .+  ( k  .x.  Z
) )  <->  E. y  e.  U  X  =  ( y  .+  (
k  .x.  Z )
) ) )
5756riotabidv 6322 . . . . . 6  |-  ( x  =  X  ->  ( iota_ k  e.  K E. y  e.  U  x  =  ( y  .+  ( k  .x.  Z
) ) )  =  ( iota_ k  e.  K E. y  e.  U  X  =  ( y  .+  ( k  .x.  Z
) ) ) )
58 lshpkrlem.g . . . . . 6  |-  G  =  ( x  e.  V  |->  ( iota_ k  e.  K E. y  e.  U  x  =  ( y  .+  ( k  .x.  Z
) ) ) )
59 riotaex 6324 . . . . . 6  |-  ( iota_ k  e.  K E. y  e.  U  X  =  ( y  .+  (
k  .x.  Z )
) )  e.  _V
6057, 58, 59fvmpt 5618 . . . . 5  |-  ( X  e.  V  ->  ( G `  X )  =  ( iota_ k  e.  K E. y  e.  U  X  =  ( y  .+  ( k 
.x.  Z ) ) ) )
61 oveq1 5881 . . . . . . . . 9  |-  ( y  =  b  ->  (
y  .+  ( k  .x.  Z ) )  =  ( b  .+  (
k  .x.  Z )
) )
6261eqeq2d 2307 . . . . . . . 8  |-  ( y  =  b  ->  ( X  =  ( y  .+  ( k  .x.  Z
) )  <->  X  =  ( b  .+  (
k  .x.  Z )
) ) )
6362cbvrexv 2778 . . . . . . 7  |-  ( E. y  e.  U  X  =  ( y  .+  ( k  .x.  Z
) )  <->  E. b  e.  U  X  =  ( b  .+  (
k  .x.  Z )
) )
6463a1i 10 . . . . . 6  |-  ( k  e.  K  ->  ( E. y  e.  U  X  =  ( y  .+  ( k  .x.  Z
) )  <->  E. b  e.  U  X  =  ( b  .+  (
k  .x.  Z )
) ) )
6564riotabiia 6338 . . . . 5  |-  ( iota_ k  e.  K E. y  e.  U  X  =  ( y  .+  (
k  .x.  Z )
) )  =  (
iota_ k  e.  K E. b  e.  U  X  =  ( b  .+  ( k  .x.  Z
) ) )
6660, 65syl6eq 2344 . . . 4  |-  ( X  e.  V  ->  ( G `  X )  =  ( iota_ k  e.  K E. b  e.  U  X  =  ( b  .+  ( k 
.x.  Z ) ) ) )
6717, 66syl 15 . . 3  |-  ( ph  ->  ( G `  X
)  =  ( iota_ k  e.  K E. b  e.  U  X  =  ( b  .+  (
k  .x.  Z )
) ) )
6867eqeq1d 2304 . 2  |-  ( ph  ->  ( ( G `  X )  =  .0.  <->  (
iota_ k  e.  K E. b  e.  U  X  =  ( b  .+  ( k  .x.  Z
) ) )  =  .0.  ) )
6926, 54, 683bitr4d 276 1  |-  ( ph  ->  ( X  e.  U  <->  ( G `  X )  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   E.wrex 2557   E!wreu 2558   {csn 3653    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   iota_crio 6313   Basecbs 13164   +g cplusg 13224  Scalarcsca 13227   .scvsca 13228   0gc0g 13416   Grpcgrp 14378   LSSumclsm 14961   LModclmod 15643   LSubSpclss 15705   LSpanclspn 15744   LVecclvec 15871  LSHypclsh 29787
This theorem is referenced by:  lshpkr  29929
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-tpos 6250  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-0g 13420  df-mnd 14383  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-subg 14634  df-cntz 14809  df-lsm 14963  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-ur 15358  df-oppr 15421  df-dvdsr 15439  df-unit 15440  df-invr 15470  df-drng 15530  df-lmod 15645  df-lss 15706  df-lsp 15745  df-lvec 15872  df-lshyp 29789
  Copyright terms: Public domain W3C validator