Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshplss Unicode version

Theorem lshplss 29464
Description: A hyperplane is a subspace. (Contributed by NM, 3-Jul-2014.)
Hypotheses
Ref Expression
lshplss.s  |-  S  =  ( LSubSp `  W )
lshplss.h  |-  H  =  (LSHyp `  W )
lshplss.w  |-  ( ph  ->  W  e.  LMod )
lshplss.u  |-  ( ph  ->  U  e.  H )
Assertion
Ref Expression
lshplss  |-  ( ph  ->  U  e.  S )

Proof of Theorem lshplss
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 lshplss.u . . 3  |-  ( ph  ->  U  e.  H )
2 lshplss.w . . . 4  |-  ( ph  ->  W  e.  LMod )
3 eqid 2404 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
4 eqid 2404 . . . . 5  |-  ( LSpan `  W )  =  (
LSpan `  W )
5 lshplss.s . . . . 5  |-  S  =  ( LSubSp `  W )
6 lshplss.h . . . . 5  |-  H  =  (LSHyp `  W )
73, 4, 5, 6islshp 29462 . . . 4  |-  ( W  e.  LMod  ->  ( U  e.  H  <->  ( U  e.  S  /\  U  =/=  ( Base `  W
)  /\  E. v  e.  ( Base `  W
) ( ( LSpan `  W ) `  ( U  u.  { v } ) )  =  ( Base `  W
) ) ) )
82, 7syl 16 . . 3  |-  ( ph  ->  ( U  e.  H  <->  ( U  e.  S  /\  U  =/=  ( Base `  W
)  /\  E. v  e.  ( Base `  W
) ( ( LSpan `  W ) `  ( U  u.  { v } ) )  =  ( Base `  W
) ) ) )
91, 8mpbid 202 . 2  |-  ( ph  ->  ( U  e.  S  /\  U  =/=  ( Base `  W )  /\  E. v  e.  ( Base `  W ) ( (
LSpan `  W ) `  ( U  u.  { v } ) )  =  ( Base `  W
) ) )
109simp1d 969 1  |-  ( ph  ->  U  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   E.wrex 2667    u. cun 3278   {csn 3774   ` cfv 5413   Basecbs 13424   LModclmod 15905   LSubSpclss 15963   LSpanclspn 16002  LSHypclsh 29458
This theorem is referenced by:  lshpnel  29466  lshpnelb  29467  lshpne0  29469  lshpdisj  29470  lshpcmp  29471  lshpsmreu  29592  lshpkrlem1  29593  lshpkrlem5  29597  lshpkr  29600  dochshpncl  31867  dochshpsat  31937  lclkrlem2f  31995
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fv 5421  df-lshyp 29460
  Copyright terms: Public domain W3C validator