Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshplss Unicode version

Theorem lshplss 29240
Description: A hyperplane is a subspace. (Contributed by NM, 3-Jul-2014.)
Hypotheses
Ref Expression
lshplss.s  |-  S  =  ( LSubSp `  W )
lshplss.h  |-  H  =  (LSHyp `  W )
lshplss.w  |-  ( ph  ->  W  e.  LMod )
lshplss.u  |-  ( ph  ->  U  e.  H )
Assertion
Ref Expression
lshplss  |-  ( ph  ->  U  e.  S )

Proof of Theorem lshplss
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 lshplss.u . . 3  |-  ( ph  ->  U  e.  H )
2 lshplss.w . . . 4  |-  ( ph  ->  W  e.  LMod )
3 eqid 2358 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
4 eqid 2358 . . . . 5  |-  ( LSpan `  W )  =  (
LSpan `  W )
5 lshplss.s . . . . 5  |-  S  =  ( LSubSp `  W )
6 lshplss.h . . . . 5  |-  H  =  (LSHyp `  W )
73, 4, 5, 6islshp 29238 . . . 4  |-  ( W  e.  LMod  ->  ( U  e.  H  <->  ( U  e.  S  /\  U  =/=  ( Base `  W
)  /\  E. v  e.  ( Base `  W
) ( ( LSpan `  W ) `  ( U  u.  { v } ) )  =  ( Base `  W
) ) ) )
82, 7syl 15 . . 3  |-  ( ph  ->  ( U  e.  H  <->  ( U  e.  S  /\  U  =/=  ( Base `  W
)  /\  E. v  e.  ( Base `  W
) ( ( LSpan `  W ) `  ( U  u.  { v } ) )  =  ( Base `  W
) ) ) )
91, 8mpbid 201 . 2  |-  ( ph  ->  ( U  e.  S  /\  U  =/=  ( Base `  W )  /\  E. v  e.  ( Base `  W ) ( (
LSpan `  W ) `  ( U  u.  { v } ) )  =  ( Base `  W
) ) )
109simp1d 967 1  |-  ( ph  ->  U  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   E.wrex 2620    u. cun 3226   {csn 3716   ` cfv 5337   Basecbs 13245   LModclmod 15726   LSubSpclss 15788   LSpanclspn 15827  LSHypclsh 29234
This theorem is referenced by:  lshpnel  29242  lshpnelb  29243  lshpne0  29245  lshpdisj  29246  lshpcmp  29247  lshpsmreu  29368  lshpkrlem1  29369  lshpkrlem5  29373  lshpkr  29376  dochshpncl  31643  dochshpsat  31713  lclkrlem2f  31771
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pr 4295
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-iota 5301  df-fun 5339  df-fv 5345  df-lshyp 29236
  Copyright terms: Public domain W3C validator