MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcv Unicode version

Theorem lsmcv 15894
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 22231 analog.) TODO: ugly proof; can it be shortened? (Contributed by NM, 2-Oct-2014.)
Hypotheses
Ref Expression
lsmcv.v  |-  V  =  ( Base `  W
)
lsmcv.s  |-  S  =  ( LSubSp `  W )
lsmcv.n  |-  N  =  ( LSpan `  W )
lsmcv.p  |-  .(+)  =  (
LSSum `  W )
lsmcv.w  |-  ( ph  ->  W  e.  LVec )
lsmcv.t  |-  ( ph  ->  T  e.  S )
lsmcv.u  |-  ( ph  ->  U  e.  S )
lsmcv.x  |-  ( ph  ->  X  e.  V )
Assertion
Ref Expression
lsmcv  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  ->  U  =  ( T  .(+)  ( N `
 { X }
) ) )

Proof of Theorem lsmcv
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 957 . 2  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  ->  U  C_  ( T  .(+)  ( N `  { X } ) ) )
2 simp2 956 . . . 4  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  ->  T  C.  U )
3 pssss 3271 . . . 4  |-  ( T 
C.  U  ->  T  C_  U )
42, 3syl 15 . . 3  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  ->  T  C_  U
)
5 pssnel 3519 . . . . 5  |-  ( T 
C.  U  ->  E. x
( x  e.  U  /\  -.  x  e.  T
) )
62, 5syl 15 . . . 4  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  ->  E. x
( x  e.  U  /\  -.  x  e.  T
) )
7 simpl3 960 . . . . . . . . 9  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  U  C_  ( T  .(+)  ( N `
 { X }
) ) )
8 simprl 732 . . . . . . . . 9  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  x  e.  U )
97, 8sseldd 3181 . . . . . . . 8  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  x  e.  ( T  .(+)  ( N `
 { X }
) ) )
10 lsmcv.w . . . . . . . . . . . . . 14  |-  ( ph  ->  W  e.  LVec )
11 lveclmod 15859 . . . . . . . . . . . . . 14  |-  ( W  e.  LVec  ->  W  e. 
LMod )
1210, 11syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  W  e.  LMod )
13 lsmcv.s . . . . . . . . . . . . . 14  |-  S  =  ( LSubSp `  W )
1413lsssssubg 15715 . . . . . . . . . . . . 13  |-  ( W  e.  LMod  ->  S  C_  (SubGrp `  W ) )
1512, 14syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  S  C_  (SubGrp `  W
) )
16 lsmcv.t . . . . . . . . . . . 12  |-  ( ph  ->  T  e.  S )
1715, 16sseldd 3181 . . . . . . . . . . 11  |-  ( ph  ->  T  e.  (SubGrp `  W ) )
18 lsmcv.x . . . . . . . . . . . . 13  |-  ( ph  ->  X  e.  V )
19 lsmcv.v . . . . . . . . . . . . . 14  |-  V  =  ( Base `  W
)
20 lsmcv.n . . . . . . . . . . . . . 14  |-  N  =  ( LSpan `  W )
2119, 13, 20lspsncl 15734 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  S
)
2212, 18, 21syl2anc 642 . . . . . . . . . . . 12  |-  ( ph  ->  ( N `  { X } )  e.  S
)
2315, 22sseldd 3181 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { X } )  e.  (SubGrp `  W ) )
24 eqid 2283 . . . . . . . . . . . 12  |-  ( +g  `  W )  =  ( +g  `  W )
25 lsmcv.p . . . . . . . . . . . 12  |-  .(+)  =  (
LSSum `  W )
2624, 25lsmelval 14960 . . . . . . . . . . 11  |-  ( ( T  e.  (SubGrp `  W )  /\  ( N `  { X } )  e.  (SubGrp `  W ) )  -> 
( x  e.  ( T  .(+)  ( N `  { X } ) )  <->  E. y  e.  T  E. z  e.  ( N `  { X } ) x  =  ( y ( +g  `  W ) z ) ) )
2717, 23, 26syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( T  .(+)  ( N `  { X } ) )  <->  E. y  e.  T  E. z  e.  ( N `  { X } ) x  =  ( y ( +g  `  W ) z ) ) )
28273ad2ant1 976 . . . . . . . . 9  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  ->  ( x  e.  ( T  .(+)  ( N `
 { X }
) )  <->  E. y  e.  T  E. z  e.  ( N `  { X } ) x  =  ( y ( +g  `  W ) z ) ) )
2928adantr 451 . . . . . . . 8  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  (
x  e.  ( T 
.(+)  ( N `  { X } ) )  <->  E. y  e.  T  E. z  e.  ( N `  { X } ) x  =  ( y ( +g  `  W ) z ) ) )
309, 29mpbid 201 . . . . . . 7  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  E. y  e.  T  E. z  e.  ( N `  { X } ) x  =  ( y ( +g  `  W ) z ) )
31 simp1rr 1021 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  -.  x  e.  T )
32 simp2l 981 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  y  e.  T )
33 oveq2 5866 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( 0g `  W )  ->  (
y ( +g  `  W
) z )  =  ( y ( +g  `  W ) ( 0g
`  W ) ) )
3433eqeq2d 2294 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( 0g `  W )  ->  (
x  =  ( y ( +g  `  W
) z )  <->  x  =  ( y ( +g  `  W ) ( 0g
`  W ) ) ) )
3534biimpac 472 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  ( y ( +g  `  W
) z )  /\  z  =  ( 0g `  W ) )  ->  x  =  ( y
( +g  `  W ) ( 0g `  W
) ) )
36123ad2ant1 976 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  ->  W  e.  LMod )
3736ad2antrr 706 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) ) )  ->  W  e.  LMod )
38163ad2ant1 976 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  ->  T  e.  S )
3938ad2antrr 706 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) ) )  ->  T  e.  S )
40 simprl 732 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) ) )  ->  y  e.  T )
4119, 13lssel 15695 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( T  e.  S  /\  y  e.  T )  ->  y  e.  V )
4239, 40, 41syl2anc 642 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) ) )  ->  y  e.  V )
43 eqid 2283 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 0g
`  W )  =  ( 0g `  W
)
4419, 24, 43lmod0vrid 15661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( W  e.  LMod  /\  y  e.  V )  ->  (
y ( +g  `  W
) ( 0g `  W ) )  =  y )
4537, 42, 44syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) ) )  ->  (
y ( +g  `  W
) ( 0g `  W ) )  =  y )
4645eqeq2d 2294 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) ) )  ->  (
x  =  ( y ( +g  `  W
) ( 0g `  W ) )  <->  x  =  y ) )
4746biimpd 198 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) ) )  ->  (
x  =  ( y ( +g  `  W
) ( 0g `  W ) )  ->  x  =  y )
)
4847ex 423 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  (
( y  e.  T  /\  z  e.  ( N `  { X } ) )  -> 
( x  =  ( y ( +g  `  W
) ( 0g `  W ) )  ->  x  =  y )
) )
4935, 48syl7 63 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  (
( y  e.  T  /\  z  e.  ( N `  { X } ) )  -> 
( ( x  =  ( y ( +g  `  W ) z )  /\  z  =  ( 0g `  W ) )  ->  x  =  y ) ) )
5049exp4a 589 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  (
( y  e.  T  /\  z  e.  ( N `  { X } ) )  -> 
( x  =  ( y ( +g  `  W
) z )  -> 
( z  =  ( 0g `  W )  ->  x  =  y ) ) ) )
51503imp 1145 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  ( z  =  ( 0g `  W )  ->  x  =  y ) )
52 eleq1 2343 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  (
x  e.  T  <->  y  e.  T ) )
5352biimparc 473 . . . . . . . . . . . . 13  |-  ( ( y  e.  T  /\  x  =  y )  ->  x  e.  T )
5432, 51, 53ee12an 1353 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  ( z  =  ( 0g `  W )  ->  x  e.  T ) )
5554necon3bd 2483 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  ( -.  x  e.  T  ->  z  =/=  ( 0g `  W ) ) )
5631, 55mpd 14 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  z  =/=  ( 0g `  W ) )
57103ad2ant1 976 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  ->  W  e.  LVec )
5857adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  W  e.  LVec )
59583ad2ant1 976 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  W  e.  LVec )
60 lmodabl 15672 . . . . . . . . . . . . . 14  |-  ( W  e.  LMod  ->  W  e. 
Abel )
6111, 60syl 15 . . . . . . . . . . . . 13  |-  ( W  e.  LVec  ->  W  e. 
Abel )
6259, 61syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  W  e.  Abel )
63 simp1l1 1048 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  ph )
6463, 16syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  T  e.  S )
6564, 32, 41syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  y  e.  V )
6659, 11syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  W  e.  LMod )
6763, 18syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  X  e.  V )
6866, 67, 21syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  ( N `  { X } )  e.  S )
69 simp2r 982 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  z  e.  ( N `  { X } ) )
7019, 13lssel 15695 . . . . . . . . . . . . 13  |-  ( ( ( N `  { X } )  e.  S  /\  z  e.  ( N `  { X } ) )  -> 
z  e.  V )
7168, 69, 70syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  z  e.  V )
72 eqid 2283 . . . . . . . . . . . . 13  |-  ( -g `  W )  =  (
-g `  W )
7319, 24, 72ablpncan2 15117 . . . . . . . . . . . 12  |-  ( ( W  e.  Abel  /\  y  e.  V  /\  z  e.  V )  ->  (
( y ( +g  `  W ) z ) ( -g `  W
) y )  =  z )
7462, 65, 71, 73syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  ( (
y ( +g  `  W
) z ) (
-g `  W )
y )  =  z )
75 lsmcv.u . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  S )
7663, 75syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  U  e.  S )
77 simp3 957 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  x  =  ( y ( +g  `  W ) z ) )
78 simp1rl 1020 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  x  e.  U )
7977, 78eqeltrrd 2358 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  ( y
( +g  `  W ) z )  e.  U
)
80 simp1l2 1049 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  T  C.  U )
813sselda 3180 . . . . . . . . . . . . 13  |-  ( ( T  C.  U  /\  y  e.  T )  ->  y  e.  U )
8280, 32, 81syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  y  e.  U )
8372, 13lssvsubcl 15701 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( ( y ( +g  `  W
) z )  e.  U  /\  y  e.  U ) )  -> 
( ( y ( +g  `  W ) z ) ( -g `  W ) y )  e.  U )
8466, 76, 79, 82, 83syl22anc 1183 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  ( (
y ( +g  `  W
) z ) (
-g `  W )
y )  e.  U
)
8574, 84eqeltrrd 2358 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  z  e.  U )
86593ad2ant1 976 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  W  e.  LVec )
87633ad2ant1 976 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  ph )
8887, 18syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  X  e.  V )
89 simp12r 1069 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  z  e.  ( N `  { X } ) )
90 simp2 956 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  z  =/=  ( 0g `  W
) )
9119, 43, 20, 86, 88, 89, 90lspsneleq 15868 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  ( N `  { z } )  =  ( N `  { X } ) )
9286, 11syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  W  e.  LMod )
9387, 75syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  U  e.  S )
94 simp3 957 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  z  e.  U )
9513, 20, 92, 93, 94lspsnel5a 15753 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  ( N `  { z } )  C_  U
)
9691, 95eqsstr3d 3213 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  /\  ( x  e.  U  /\  -.  x  e.  T ) )  /\  ( y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y
( +g  `  W ) z ) )  /\  z  =/=  ( 0g `  W )  /\  z  e.  U )  ->  ( N `  { X } )  C_  U
)
9756, 85, 96mpd3an23 1279 . . . . . . . . 9  |-  ( ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  /\  (
y  e.  T  /\  z  e.  ( N `  { X } ) )  /\  x  =  ( y ( +g  `  W ) z ) )  ->  ( N `  { X } ) 
C_  U )
98973exp 1150 . . . . . . . 8  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  (
( y  e.  T  /\  z  e.  ( N `  { X } ) )  -> 
( x  =  ( y ( +g  `  W
) z )  -> 
( N `  { X } )  C_  U
) ) )
9998rexlimdvv 2673 . . . . . . 7  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  ( E. y  e.  T  E. z  e.  ( N `  { X } ) x  =  ( y ( +g  `  W ) z )  ->  ( N `  { X } )  C_  U ) )
10030, 99mpd 14 . . . . . 6  |-  ( ( ( ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `
 { X }
) ) )  /\  ( x  e.  U  /\  -.  x  e.  T
) )  ->  ( N `  { X } )  C_  U
)
101100ex 423 . . . . 5  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  ->  ( (
x  e.  U  /\  -.  x  e.  T
)  ->  ( N `  { X } ) 
C_  U ) )
102101exlimdv 1664 . . . 4  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  ->  ( E. x ( x  e.  U  /\  -.  x  e.  T )  ->  ( N `  { X } )  C_  U
) )
1036, 102mpd 14 . . 3  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  ->  ( N `  { X } ) 
C_  U )
10415, 75sseldd 3181 . . . . 5  |-  ( ph  ->  U  e.  (SubGrp `  W ) )
10525lsmlub 14974 . . . . 5  |-  ( ( T  e.  (SubGrp `  W )  /\  ( N `  { X } )  e.  (SubGrp `  W )  /\  U  e.  (SubGrp `  W )
)  ->  ( ( T  C_  U  /\  ( N `  { X } )  C_  U
)  <->  ( T  .(+)  ( N `  { X } ) )  C_  U ) )
10617, 23, 104, 105syl3anc 1182 . . . 4  |-  ( ph  ->  ( ( T  C_  U  /\  ( N `  { X } )  C_  U )  <->  ( T  .(+) 
( N `  { X } ) )  C_  U ) )
1071063ad2ant1 976 . . 3  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  ->  ( ( T  C_  U  /\  ( N `  { X } )  C_  U
)  <->  ( T  .(+)  ( N `  { X } ) )  C_  U ) )
1084, 103, 107mpbi2and 887 . 2  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  ->  ( T  .(+) 
( N `  { X } ) )  C_  U )
1091, 108eqssd 3196 1  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( N `  { X } ) ) )  ->  U  =  ( T  .(+)  ( N `
 { X }
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544    C_ wss 3152    C. wpss 3153   {csn 3640   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208   0gc0g 13400   -gcsg 14365  SubGrpcsubg 14615   LSSumclsm 14945   Abelcabel 15090   LModclmod 15627   LSubSpclss 15689   LSpanclspn 15728   LVecclvec 15855
This theorem is referenced by:  lshpnelb  29174  lshpcmp  29178  lsmsatcv  29200  lsmcv2  29219  dochshpncl  31574
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-0g 13404  df-mnd 14367  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-subg 14618  df-lsm 14947  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-drng 15514  df-lmod 15629  df-lss 15690  df-lsp 15729  df-lvec 15856
  Copyright terms: Public domain W3C validator