Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmcv2 Unicode version

Theorem lsmcv2 28487
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of [Kalmbach] p. 153. (spansncv2 22866 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsmcv2.v  |-  V  =  ( Base `  W
)
lsmcv2.s  |-  S  =  ( LSubSp `  W )
lsmcv2.n  |-  N  =  ( LSpan `  W )
lsmcv2.p  |-  .(+)  =  (
LSSum `  W )
lsmcv2.c  |-  C  =  (  <oLL  `  W )
lsmcv2.w  |-  ( ph  ->  W  e.  LVec )
lsmcv2.u  |-  ( ph  ->  U  e.  S )
lsmcv2.x  |-  ( ph  ->  X  e.  V )
lsmcv2.l  |-  ( ph  ->  -.  ( N `  { X } )  C_  U )
Assertion
Ref Expression
lsmcv2  |-  ( ph  ->  U C ( U 
.(+)  ( N `  { X } ) ) )
Dummy variable  x is distinct from all other variables.

Proof of Theorem lsmcv2
StepHypRef Expression
1 lsmcv2.l . . 3  |-  ( ph  ->  -.  ( N `  { X } )  C_  U )
2 lsmcv2.p . . . 4  |-  .(+)  =  (
LSSum `  W )
3 lsmcv2.w . . . . . . 7  |-  ( ph  ->  W  e.  LVec )
4 lveclmod 15854 . . . . . . 7  |-  ( W  e.  LVec  ->  W  e. 
LMod )
53, 4syl 17 . . . . . 6  |-  ( ph  ->  W  e.  LMod )
6 lsmcv2.s . . . . . . 7  |-  S  =  ( LSubSp `  W )
76lsssssubg 15710 . . . . . 6  |-  ( W  e.  LMod  ->  S  C_  (SubGrp `  W ) )
85, 7syl 17 . . . . 5  |-  ( ph  ->  S  C_  (SubGrp `  W
) )
9 lsmcv2.u . . . . 5  |-  ( ph  ->  U  e.  S )
108, 9sseldd 3183 . . . 4  |-  ( ph  ->  U  e.  (SubGrp `  W ) )
11 lsmcv2.x . . . . . 6  |-  ( ph  ->  X  e.  V )
12 lsmcv2.v . . . . . . 7  |-  V  =  ( Base `  W
)
13 lsmcv2.n . . . . . . 7  |-  N  =  ( LSpan `  W )
1412, 6, 13lspsncl 15729 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  S
)
155, 11, 14syl2anc 644 . . . . 5  |-  ( ph  ->  ( N `  { X } )  e.  S
)
168, 15sseldd 3183 . . . 4  |-  ( ph  ->  ( N `  { X } )  e.  (SubGrp `  W ) )
172, 10, 16lssnle 14978 . . 3  |-  ( ph  ->  ( -.  ( N `
 { X }
)  C_  U  <->  U  C.  ( U  .(+)  ( N `
 { X }
) ) ) )
181, 17mpbid 203 . 2  |-  ( ph  ->  U  C.  ( U 
.(+)  ( N `  { X } ) ) )
19 3simpa 954 . . . . 5  |-  ( (
ph  /\  x  e.  S  /\  ( U  C.  x  /\  x  C_  ( U  .(+)  ( N `  { X } ) ) ) )  ->  ( ph  /\  x  e.  S
) )
20 simp3l 985 . . . . 5  |-  ( (
ph  /\  x  e.  S  /\  ( U  C.  x  /\  x  C_  ( U  .(+)  ( N `  { X } ) ) ) )  ->  U  C.  x )
21 simp3r 986 . . . . 5  |-  ( (
ph  /\  x  e.  S  /\  ( U  C.  x  /\  x  C_  ( U  .(+)  ( N `  { X } ) ) ) )  ->  x  C_  ( U  .(+)  ( N `
 { X }
) ) )
223adantr 453 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  W  e.  LVec )
239adantr 453 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  U  e.  S )
24 simpr 449 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  S )
2511adantr 453 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  X  e.  V )
2612, 6, 13, 2, 22, 23, 24, 25lsmcv 15889 . . . . 5  |-  ( ( ( ph  /\  x  e.  S )  /\  U  C.  x  /\  x  C_  ( U  .(+)  ( N `
 { X }
) ) )  ->  x  =  ( U  .(+) 
( N `  { X } ) ) )
2719, 20, 21, 26syl3anc 1184 . . . 4  |-  ( (
ph  /\  x  e.  S  /\  ( U  C.  x  /\  x  C_  ( U  .(+)  ( N `  { X } ) ) ) )  ->  x  =  ( U  .(+)  ( N `  { X } ) ) )
28273exp 1152 . . 3  |-  ( ph  ->  ( x  e.  S  ->  ( ( U  C.  x  /\  x  C_  ( U  .(+)  ( N `  { X } ) ) )  ->  x  =  ( U  .(+)  ( N `
 { X }
) ) ) ) )
2928ralrimiv 2627 . 2  |-  ( ph  ->  A. x  e.  S  ( ( U  C.  x  /\  x  C_  ( U  .(+)  ( N `  { X } ) ) )  ->  x  =  ( U  .(+)  ( N `
 { X }
) ) ) )
30 lsmcv2.c . . 3  |-  C  =  (  <oLL  `  W )
316, 2lsmcl 15831 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  ( N `  { X } )  e.  S
)  ->  ( U  .(+) 
( N `  { X } ) )  e.  S )
325, 9, 15, 31syl3anc 1184 . . 3  |-  ( ph  ->  ( U  .(+)  ( N `
 { X }
) )  e.  S
)
336, 30, 3, 9, 32lcvbr2 28480 . 2  |-  ( ph  ->  ( U C ( U  .(+)  ( N `  { X } ) )  <->  ( U  C.  ( U  .(+)  ( N `
 { X }
) )  /\  A. x  e.  S  (
( U  C.  x  /\  x  C_  ( U 
.(+)  ( N `  { X } ) ) )  ->  x  =  ( U  .(+)  ( N `
 { X }
) ) ) ) ) )
3418, 29, 33mpbir2and 890 1  |-  ( ph  ->  U C ( U 
.(+)  ( N `  { X } ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   A.wral 2545    C_ wss 3154    C. wpss 3155   {csn 3642   class class class wbr 4025   ` cfv 5222  (class class class)co 5820   Basecbs 13143  SubGrpcsubg 14610   LSSumclsm 14940   LModclmod 15622   LSubSpclss 15684   LSpanclspn 15723   LVecclvec 15850    <oLL clcv 28476
This theorem is referenced by:  lcv1  28499
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-tpos 6196  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-nn 9743  df-2 9800  df-3 9801  df-ndx 13146  df-slot 13147  df-base 13148  df-sets 13149  df-ress 13150  df-plusg 13216  df-mulr 13217  df-0g 13399  df-mnd 14362  df-submnd 14411  df-grp 14484  df-minusg 14485  df-sbg 14486  df-subg 14613  df-cntz 14788  df-lsm 14942  df-cmn 15086  df-abl 15087  df-mgp 15321  df-rng 15335  df-ur 15337  df-oppr 15400  df-dvdsr 15418  df-unit 15419  df-invr 15449  df-drng 15509  df-lmod 15624  df-lss 15685  df-lsp 15724  df-lvec 15851  df-lcv 28477
  Copyright terms: Public domain W3C validator