MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmmod Unicode version

Theorem lsmmod 14980
Description: The modular law holds for subgroup sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
lsmmod.p  |-  .(+)  =  (
LSSum `  G )
Assertion
Ref Expression
lsmmod  |-  ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  S  C_  U )  -> 
( S  .(+)  ( T  i^i  U ) )  =  ( ( S 
.(+)  T )  i^i  U
) )

Proof of Theorem lsmmod
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 958 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  S  C_  U )  ->  S  e.  (SubGrp `  G
) )
2 simpl2 959 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  S  C_  U )  ->  T  e.  (SubGrp `  G
) )
3 inss1 3390 . . . . 5  |-  ( T  i^i  U )  C_  T
43a1i 10 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  S  C_  U )  -> 
( T  i^i  U
)  C_  T )
5 lsmmod.p . . . . 5  |-  .(+)  =  (
LSSum `  G )
65lsmless2 14967 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  ( T  i^i  U
)  C_  T )  ->  ( S  .(+)  ( T  i^i  U ) ) 
C_  ( S  .(+)  T ) )
71, 2, 4, 6syl3anc 1182 . . 3  |-  ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  S  C_  U )  -> 
( S  .(+)  ( T  i^i  U ) ) 
C_  ( S  .(+)  T ) )
8 simpr 447 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  S  C_  U )  ->  S  C_  U )
9 inss2 3391 . . . . 5  |-  ( T  i^i  U )  C_  U
109a1i 10 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  S  C_  U )  -> 
( T  i^i  U
)  C_  U )
11 subgrcl 14622 . . . . . . . 8  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
121, 11syl 15 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  S  C_  U )  ->  G  e.  Grp )
13 eqid 2284 . . . . . . . 8  |-  ( Base `  G )  =  (
Base `  G )
1413subgacs 14648 . . . . . . 7  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
15 acsmre 13550 . . . . . . 7  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
1612, 14, 153syl 18 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  S  C_  U )  -> 
(SubGrp `  G )  e.  (Moore `  ( Base `  G ) ) )
17 simpl3 960 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  S  C_  U )  ->  U  e.  (SubGrp `  G
) )
18 mreincl 13497 . . . . . 6  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  T  e.  (SubGrp `  G
)  /\  U  e.  (SubGrp `  G ) )  ->  ( T  i^i  U )  e.  (SubGrp `  G ) )
1916, 2, 17, 18syl3anc 1182 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  S  C_  U )  -> 
( T  i^i  U
)  e.  (SubGrp `  G ) )
205lsmlub 14970 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  ( T  i^i  U )  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  -> 
( ( S  C_  U  /\  ( T  i^i  U )  C_  U )  <->  ( S  .(+)  ( T  i^i  U ) )  C_  U ) )
211, 19, 17, 20syl3anc 1182 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  S  C_  U )  -> 
( ( S  C_  U  /\  ( T  i^i  U )  C_  U )  <->  ( S  .(+)  ( T  i^i  U ) )  C_  U ) )
228, 10, 21mpbi2and 887 . . 3  |-  ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  S  C_  U )  -> 
( S  .(+)  ( T  i^i  U ) ) 
C_  U )
237, 22ssind 3394 . 2  |-  ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  S  C_  U )  -> 
( S  .(+)  ( T  i^i  U ) ) 
C_  ( ( S 
.(+)  T )  i^i  U
) )
24 elin 3359 . . . 4  |-  ( x  e.  ( ( S 
.(+)  T )  i^i  U
)  <->  ( x  e.  ( S  .(+)  T )  /\  x  e.  U
) )
25 eqid 2284 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
2625, 5lsmelval 14956 . . . . . . 7  |-  ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )
)  ->  ( x  e.  ( S  .(+)  T )  <->  E. y  e.  S  E. z  e.  T  x  =  ( y
( +g  `  G ) z ) ) )
271, 2, 26syl2anc 642 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  S  C_  U )  -> 
( x  e.  ( S  .(+)  T )  <->  E. y  e.  S  E. z  e.  T  x  =  ( y ( +g  `  G ) z ) ) )
281adantr 451 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  S  e.  (SubGrp `  G ) )
2919adantr 451 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  ( T  i^i  U )  e.  (SubGrp `  G ) )
30 simprll 738 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  y  e.  S
)
31 simprlr 739 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  z  e.  T
)
3228, 11syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  G  e.  Grp )
3317adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  U  e.  (SubGrp `  G ) )
3413subgss 14618 . . . . . . . . . . . . . . . . 17  |-  ( U  e.  (SubGrp `  G
)  ->  U  C_  ( Base `  G ) )
3533, 34syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  U  C_  ( Base `  G ) )
368adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  S  C_  U
)
3736, 30sseldd 3182 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  y  e.  U
)
3835, 37sseldd 3182 . . . . . . . . . . . . . . 15  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  y  e.  (
Base `  G )
)
39 eqid 2284 . . . . . . . . . . . . . . . 16  |-  ( 0g
`  G )  =  ( 0g `  G
)
40 eqid 2284 . . . . . . . . . . . . . . . 16  |-  ( inv g `  G )  =  ( inv g `  G )
4113, 25, 39, 40grplinv 14524 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  y  e.  ( Base `  G ) )  -> 
( ( ( inv g `  G ) `
 y ) ( +g  `  G ) y )  =  ( 0g `  G ) )
4232, 38, 41syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  ( ( ( inv g `  G
) `  y )
( +g  `  G ) y )  =  ( 0g `  G ) )
4342oveq1d 5835 . . . . . . . . . . . . 13  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  ( ( ( ( inv g `  G ) `  y
) ( +g  `  G
) y ) ( +g  `  G ) z )  =  ( ( 0g `  G
) ( +g  `  G
) z ) )
4440subginvcl 14626 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  (SubGrp `  G )  /\  y  e.  U )  ->  (
( inv g `  G ) `  y
)  e.  U )
4533, 37, 44syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  ( ( inv g `  G ) `
 y )  e.  U )
4635, 45sseldd 3182 . . . . . . . . . . . . . 14  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  ( ( inv g `  G ) `
 y )  e.  ( Base `  G
) )
47 simpll2 995 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  T  e.  (SubGrp `  G ) )
4813subgss 14618 . . . . . . . . . . . . . . . 16  |-  ( T  e.  (SubGrp `  G
)  ->  T  C_  ( Base `  G ) )
4947, 48syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  T  C_  ( Base `  G ) )
5049, 31sseldd 3182 . . . . . . . . . . . . . 14  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  z  e.  (
Base `  G )
)
5113, 25grpass 14492 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  ( ( ( inv g `  G ) `
 y )  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G ) ) )  ->  ( (
( ( inv g `  G ) `  y
) ( +g  `  G
) y ) ( +g  `  G ) z )  =  ( ( ( inv g `  G ) `  y
) ( +g  `  G
) ( y ( +g  `  G ) z ) ) )
5232, 46, 38, 50, 51syl13anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  ( ( ( ( inv g `  G ) `  y
) ( +g  `  G
) y ) ( +g  `  G ) z )  =  ( ( ( inv g `  G ) `  y
) ( +g  `  G
) ( y ( +g  `  G ) z ) ) )
5313, 25, 39grplid 14508 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  z  e.  ( Base `  G ) )  -> 
( ( 0g `  G ) ( +g  `  G ) z )  =  z )
5432, 50, 53syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  ( ( 0g
`  G ) ( +g  `  G ) z )  =  z )
5543, 52, 543eqtr3d 2324 . . . . . . . . . . . 12  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  ( ( ( inv g `  G
) `  y )
( +g  `  G ) ( y ( +g  `  G ) z ) )  =  z )
56 simprr 733 . . . . . . . . . . . . 13  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  ( y ( +g  `  G ) z )  e.  U
)
5725subgcl 14627 . . . . . . . . . . . . 13  |-  ( ( U  e.  (SubGrp `  G )  /\  (
( inv g `  G ) `  y
)  e.  U  /\  ( y ( +g  `  G ) z )  e.  U )  -> 
( ( ( inv g `  G ) `
 y ) ( +g  `  G ) ( y ( +g  `  G ) z ) )  e.  U )
5833, 45, 56, 57syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  ( ( ( inv g `  G
) `  y )
( +g  `  G ) ( y ( +g  `  G ) z ) )  e.  U )
5955, 58eqeltrrd 2359 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  z  e.  U
)
60 elin 3359 . . . . . . . . . . 11  |-  ( z  e.  ( T  i^i  U )  <->  ( z  e.  T  /\  z  e.  U ) )
6131, 59, 60sylanbrc 645 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  z  e.  ( T  i^i  U ) )
6225, 5lsmelvali 14957 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( T  i^i  U )  e.  (SubGrp `  G )
)  /\  ( y  e.  S  /\  z  e.  ( T  i^i  U
) ) )  -> 
( y ( +g  `  G ) z )  e.  ( S  .(+)  ( T  i^i  U ) ) )
6328, 29, 30, 61, 62syl22anc 1183 . . . . . . . . 9  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( (
y  e.  S  /\  z  e.  T )  /\  ( y ( +g  `  G ) z )  e.  U ) )  ->  ( y ( +g  `  G ) z )  e.  ( S  .(+)  ( T  i^i  U ) ) )
6463expr 598 . . . . . . . 8  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( y  e.  S  /\  z  e.  T ) )  -> 
( ( y ( +g  `  G ) z )  e.  U  ->  ( y ( +g  `  G ) z )  e.  ( S  .(+)  ( T  i^i  U ) ) ) )
65 eleq1 2344 . . . . . . . . 9  |-  ( x  =  ( y ( +g  `  G ) z )  ->  (
x  e.  U  <->  ( y
( +g  `  G ) z )  e.  U
) )
66 eleq1 2344 . . . . . . . . 9  |-  ( x  =  ( y ( +g  `  G ) z )  ->  (
x  e.  ( S 
.(+)  ( T  i^i  U ) )  <->  ( y
( +g  `  G ) z )  e.  ( S  .(+)  ( T  i^i  U ) ) ) )
6765, 66imbi12d 311 . . . . . . . 8  |-  ( x  =  ( y ( +g  `  G ) z )  ->  (
( x  e.  U  ->  x  e.  ( S 
.(+)  ( T  i^i  U ) ) )  <->  ( (
y ( +g  `  G
) z )  e.  U  ->  ( y
( +g  `  G ) z )  e.  ( S  .(+)  ( T  i^i  U ) ) ) ) )
6864, 67syl5ibrcom 213 . . . . . . 7  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  S  C_  U
)  /\  ( y  e.  S  /\  z  e.  T ) )  -> 
( x  =  ( y ( +g  `  G
) z )  -> 
( x  e.  U  ->  x  e.  ( S 
.(+)  ( T  i^i  U ) ) ) ) )
6968rexlimdvva 2675 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  S  C_  U )  -> 
( E. y  e.  S  E. z  e.  T  x  =  ( y ( +g  `  G
) z )  -> 
( x  e.  U  ->  x  e.  ( S 
.(+)  ( T  i^i  U ) ) ) ) )
7027, 69sylbid 206 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  S  C_  U )  -> 
( x  e.  ( S  .(+)  T )  ->  ( x  e.  U  ->  x  e.  ( S 
.(+)  ( T  i^i  U ) ) ) ) )
7170imp3a 420 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  S  C_  U )  -> 
( ( x  e.  ( S  .(+)  T )  /\  x  e.  U
)  ->  x  e.  ( S  .(+)  ( T  i^i  U ) ) ) )
7224, 71syl5bi 208 . . 3  |-  ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  S  C_  U )  -> 
( x  e.  ( ( S  .(+)  T )  i^i  U )  ->  x  e.  ( S  .(+) 
( T  i^i  U
) ) ) )
7372ssrdv 3186 . 2  |-  ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  S  C_  U )  -> 
( ( S  .(+)  T )  i^i  U ) 
C_  ( S  .(+)  ( T  i^i  U ) ) )
7423, 73eqssd 3197 1  |-  ( ( ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  S  C_  U )  -> 
( S  .(+)  ( T  i^i  U ) )  =  ( ( S 
.(+)  T )  i^i  U
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685   E.wrex 2545    i^i cin 3152    C_ wss 3153   ` cfv 5221  (class class class)co 5820   Basecbs 13144   +g cplusg 13204   0gc0g 13396  Moorecmre 13480  ACScacs 13483   Grpcgrp 14358   inv gcminusg 14359  SubGrpcsubg 14611   LSSumclsm 14941
This theorem is referenced by:  lsmmod2  14981  lcvexchlem2  28504  dihmeetlem9N  30784
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-nn 9743  df-2 9800  df-ndx 13147  df-slot 13148  df-base 13149  df-sets 13150  df-ress 13151  df-plusg 13217  df-0g 13400  df-mre 13484  df-mrc 13485  df-acs 13487  df-mnd 14363  df-submnd 14412  df-grp 14485  df-minusg 14486  df-subg 14614  df-lsm 14943
  Copyright terms: Public domain W3C validator