Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmsatcv Unicode version

Theorem lsmsatcv 29273
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 22233 analog.) Explicit atom version of lsmcv 15896. (Contributed by NM, 29-Oct-2014.)
Hypotheses
Ref Expression
lsmsatcv.s  |-  S  =  ( LSubSp `  W )
lsmsatcv.p  |-  .(+)  =  (
LSSum `  W )
lsmsatcv.a  |-  A  =  (LSAtoms `  W )
lsmsatcv.w  |-  ( ph  ->  W  e.  LVec )
lsmsatcv.t  |-  ( ph  ->  T  e.  S )
lsmsatcv.u  |-  ( ph  ->  U  e.  S )
lsmsatcv.x  |-  ( ph  ->  Q  e.  A )
Assertion
Ref Expression
lsmsatcv  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  Q ) )  ->  U  =  ( T  .(+)  Q )
)

Proof of Theorem lsmsatcv
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 lsmsatcv.w . . . 4  |-  ( ph  ->  W  e.  LVec )
2 lsmsatcv.x . . . 4  |-  ( ph  ->  Q  e.  A )
3 eqid 2285 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
4 eqid 2285 . . . . 5  |-  ( LSpan `  W )  =  (
LSpan `  W )
5 lsmsatcv.a . . . . 5  |-  A  =  (LSAtoms `  W )
63, 4, 5islsati 29257 . . . 4  |-  ( ( W  e.  LVec  /\  Q  e.  A )  ->  E. v  e.  ( Base `  W
) Q  =  ( ( LSpan `  W ) `  { v } ) )
71, 2, 6syl2anc 642 . . 3  |-  ( ph  ->  E. v  e.  (
Base `  W ) Q  =  ( ( LSpan `  W ) `  { v } ) )
8 lsmsatcv.s . . . . . . . 8  |-  S  =  ( LSubSp `  W )
9 lsmsatcv.p . . . . . . . 8  |-  .(+)  =  (
LSSum `  W )
101adantr 451 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  W  e.  LVec )
11 lsmsatcv.t . . . . . . . . 9  |-  ( ph  ->  T  e.  S )
1211adantr 451 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  T  e.  S )
13 lsmsatcv.u . . . . . . . . 9  |-  ( ph  ->  U  e.  S )
1413adantr 451 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  U  e.  S )
15 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  v  e.  ( Base `  W )
)
163, 8, 4, 9, 10, 12, 14, 15lsmcv 15896 . . . . . . 7  |-  ( ( ( ph  /\  v  e.  ( Base `  W
) )  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( (
LSpan `  W ) `  { v } ) ) )  ->  U  =  ( T  .(+)  ( ( LSpan `  W ) `  { v } ) ) )
17163expib 1154 . . . . . 6  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  ( ( T  C.  U  /\  U  C_  ( T  .(+)  ( (
LSpan `  W ) `  { v } ) ) )  ->  U  =  ( T  .(+)  ( ( LSpan `  W ) `  { v } ) ) ) )
18173adant3 975 . . . . 5  |-  ( (
ph  /\  v  e.  ( Base `  W )  /\  Q  =  (
( LSpan `  W ) `  { v } ) )  ->  ( ( T  C.  U  /\  U  C_  ( T  .(+)  ( (
LSpan `  W ) `  { v } ) ) )  ->  U  =  ( T  .(+)  ( ( LSpan `  W ) `  { v } ) ) ) )
19 oveq2 5868 . . . . . . . . 9  |-  ( Q  =  ( ( LSpan `  W ) `  {
v } )  -> 
( T  .(+)  Q )  =  ( T  .(+)  ( ( LSpan `  W ) `  { v } ) ) )
2019sseq2d 3208 . . . . . . . 8  |-  ( Q  =  ( ( LSpan `  W ) `  {
v } )  -> 
( U  C_  ( T  .(+)  Q )  <->  U  C_  ( T  .(+)  ( ( LSpan `  W ) `  {
v } ) ) ) )
2120anbi2d 684 . . . . . . 7  |-  ( Q  =  ( ( LSpan `  W ) `  {
v } )  -> 
( ( T  C.  U  /\  U  C_  ( T  .(+)  Q ) )  <-> 
( T  C.  U  /\  U  C_  ( T 
.(+)  ( ( LSpan `  W ) `  {
v } ) ) ) ) )
2219eqeq2d 2296 . . . . . . 7  |-  ( Q  =  ( ( LSpan `  W ) `  {
v } )  -> 
( U  =  ( T  .(+)  Q )  <->  U  =  ( T  .(+)  ( ( LSpan `  W ) `  { v } ) ) ) )
2321, 22imbi12d 311 . . . . . 6  |-  ( Q  =  ( ( LSpan `  W ) `  {
v } )  -> 
( ( ( T 
C.  U  /\  U  C_  ( T  .(+)  Q ) )  ->  U  =  ( T  .(+)  Q ) )  <->  ( ( T 
C.  U  /\  U  C_  ( T  .(+)  ( (
LSpan `  W ) `  { v } ) ) )  ->  U  =  ( T  .(+)  ( ( LSpan `  W ) `  { v } ) ) ) ) )
24233ad2ant3 978 . . . . 5  |-  ( (
ph  /\  v  e.  ( Base `  W )  /\  Q  =  (
( LSpan `  W ) `  { v } ) )  ->  ( (
( T  C.  U  /\  U  C_  ( T 
.(+)  Q ) )  ->  U  =  ( T  .(+) 
Q ) )  <->  ( ( T  C.  U  /\  U  C_  ( T  .(+)  ( (
LSpan `  W ) `  { v } ) ) )  ->  U  =  ( T  .(+)  ( ( LSpan `  W ) `  { v } ) ) ) ) )
2518, 24mpbird 223 . . . 4  |-  ( (
ph  /\  v  e.  ( Base `  W )  /\  Q  =  (
( LSpan `  W ) `  { v } ) )  ->  ( ( T  C.  U  /\  U  C_  ( T  .(+)  Q ) )  ->  U  =  ( T  .(+)  Q ) ) )
2625rexlimdv3a 2671 . . 3  |-  ( ph  ->  ( E. v  e.  ( Base `  W
) Q  =  ( ( LSpan `  W ) `  { v } )  ->  ( ( T 
C.  U  /\  U  C_  ( T  .(+)  Q ) )  ->  U  =  ( T  .(+)  Q ) ) ) )
277, 26mpd 14 . 2  |-  ( ph  ->  ( ( T  C.  U  /\  U  C_  ( T  .(+)  Q ) )  ->  U  =  ( T  .(+)  Q )
) )
28273impib 1149 1  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  Q ) )  ->  U  =  ( T  .(+)  Q )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686   E.wrex 2546    C_ wss 3154    C. wpss 3155   {csn 3642   ` cfv 5257  (class class class)co 5860   Basecbs 13150   LSSumclsm 14947   LSubSpclss 15691   LSpanclspn 15730   LVecclvec 15857  LSAtomsclsa 29237
This theorem is referenced by:  dochsat  31646
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-tpos 6236  df-riota 6306  df-recs 6390  df-rdg 6425  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-nn 9749  df-2 9806  df-3 9807  df-ndx 13153  df-slot 13154  df-base 13155  df-sets 13156  df-ress 13157  df-plusg 13223  df-mulr 13224  df-0g 13406  df-mnd 14369  df-submnd 14418  df-grp 14491  df-minusg 14492  df-sbg 14493  df-subg 14620  df-lsm 14949  df-cmn 15093  df-abl 15094  df-mgp 15328  df-rng 15342  df-ur 15344  df-oppr 15407  df-dvdsr 15425  df-unit 15426  df-invr 15456  df-drng 15516  df-lmod 15631  df-lss 15692  df-lsp 15731  df-lvec 15858  df-lsatoms 29239
  Copyright terms: Public domain W3C validator