MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsncv0 Unicode version

Theorem lspsncv0 15826
Description: The span of a singleton covers the zero subspace, using Definition 3.2.18 of [PtakPulmannova] p. 68 for "covers".) (Contributed by NM, 12-Aug-2014.)
Hypotheses
Ref Expression
lspsncv0.v  |-  V  =  ( Base `  W
)
lspsncv0.z  |-  .0.  =  ( 0g `  W )
lspsncv0.s  |-  S  =  ( LSubSp `  W )
lspsncv0.n  |-  N  =  ( LSpan `  W )
lspsncv0.w  |-  ( ph  ->  W  e.  LVec )
lspsncv0.x  |-  ( ph  ->  X  e.  V )
lspsncv0.e  |-  ( ph  ->  X  =/=  .0.  )
Assertion
Ref Expression
lspsncv0  |-  ( ph  ->  -.  E. y  e.  S  ( {  .0.  } 
C.  y  /\  y  C.  ( N `  { X } ) ) )
Distinct variable group:    ph, y
Allowed substitution hints:    S( y)    N( y)    V( y)    W( y)    X( y)    .0. ( y)

Proof of Theorem lspsncv0
StepHypRef Expression
1 df-pss 3110 . . . . 5  |-  ( {  .0.  }  C.  y  <->  ( {  .0.  }  C_  y  /\  {  .0.  }  =/=  y ) )
2 simpr 449 . . . . . 6  |-  ( ( {  .0.  }  C_  y  /\  {  .0.  }  =/=  y )  ->  {  .0.  }  =/=  y )
3 necom 2500 . . . . . . 7  |-  ( {  .0.  }  =/=  y  <->  y  =/=  {  .0.  }
)
4 df-ne 2421 . . . . . . 7  |-  ( y  =/=  {  .0.  }  <->  -.  y  =  {  .0.  } )
53, 4bitri 242 . . . . . 6  |-  ( {  .0.  }  =/=  y  <->  -.  y  =  {  .0.  } )
62, 5sylib 190 . . . . 5  |-  ( ( {  .0.  }  C_  y  /\  {  .0.  }  =/=  y )  ->  -.  y  =  {  .0.  } )
71, 6sylbi 189 . . . 4  |-  ( {  .0.  }  C.  y  ->  -.  y  =  {  .0.  } )
8 lspsncv0.w . . . . . . . . . . 11  |-  ( ph  ->  W  e.  LVec )
98ad2antrr 709 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  S )  /\  y  C_  ( N `  { X } ) )  ->  W  e.  LVec )
10 simplr 734 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  S )  /\  y  C_  ( N `  { X } ) )  -> 
y  e.  S )
11 lspsncv0.x . . . . . . . . . . 11  |-  ( ph  ->  X  e.  V )
1211ad2antrr 709 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  S )  /\  y  C_  ( N `  { X } ) )  ->  X  e.  V )
13 simpr 449 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  S )  /\  y  C_  ( N `  { X } ) )  -> 
y  C_  ( N `  { X } ) )
14 lspsncv0.v . . . . . . . . . . 11  |-  V  =  ( Base `  W
)
15 lspsncv0.z . . . . . . . . . . 11  |-  .0.  =  ( 0g `  W )
16 lspsncv0.s . . . . . . . . . . 11  |-  S  =  ( LSubSp `  W )
17 lspsncv0.n . . . . . . . . . . 11  |-  N  =  ( LSpan `  W )
1814, 15, 16, 17lspsnat 15825 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  y  e.  S  /\  X  e.  V )  /\  y  C_  ( N `
 { X }
) )  ->  (
y  =  ( N `
 { X }
)  \/  y  =  {  .0.  } ) )
199, 10, 12, 13, 18syl31anc 1190 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  S )  /\  y  C_  ( N `  { X } ) )  -> 
( y  =  ( N `  { X } )  \/  y  =  {  .0.  } ) )
2019orcomd 379 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  S )  /\  y  C_  ( N `  { X } ) )  -> 
( y  =  {  .0.  }  \/  y  =  ( N `  { X } ) ) )
2120ord 368 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  S )  /\  y  C_  ( N `  { X } ) )  -> 
( -.  y  =  {  .0.  }  ->  y  =  ( N `  { X } ) ) )
2221ex 425 . . . . . 6  |-  ( (
ph  /\  y  e.  S )  ->  (
y  C_  ( N `  { X } )  ->  ( -.  y  =  {  .0.  }  ->  y  =  ( N `  { X } ) ) ) )
2322com23 74 . . . . 5  |-  ( (
ph  /\  y  e.  S )  ->  ( -.  y  =  {  .0.  }  ->  ( y  C_  ( N `  { X } )  ->  y  =  ( N `  { X } ) ) ) )
24 npss 3228 . . . . 5  |-  ( -.  y  C.  ( N `
 { X }
)  <->  ( y  C_  ( N `  { X } )  ->  y  =  ( N `  { X } ) ) )
2523, 24syl6ibr 220 . . . 4  |-  ( (
ph  /\  y  e.  S )  ->  ( -.  y  =  {  .0.  }  ->  -.  y  C.  ( N `  { X } ) ) )
267, 25syl5 30 . . 3  |-  ( (
ph  /\  y  e.  S )  ->  ( {  .0.  }  C.  y  ->  -.  y  C.  ( N `  { X } ) ) )
2726ralrimiva 2597 . 2  |-  ( ph  ->  A. y  e.  S  ( {  .0.  }  C.  y  ->  -.  y  C.  ( N `  { X } ) ) )
28 ralinexa 2559 . 2  |-  ( A. y  e.  S  ( {  .0.  }  C.  y  ->  -.  y  C.  ( N `  { X } ) )  <->  -.  E. y  e.  S  ( {  .0.  }  C.  y  /\  y  C.  ( N `  { X } ) ) )
2927, 28sylib 190 1  |-  ( ph  ->  -.  E. y  e.  S  ( {  .0.  } 
C.  y  /\  y  C.  ( N `  { X } ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2419   A.wral 2516   E.wrex 2517    C_ wss 3094    C. wpss 3095   {csn 3581   ` cfv 4638   Basecbs 13075   0gc0g 13327   LSubSpclss 15616   LSpanclspn 15655   LVecclvec 15782
This theorem is referenced by:  lsatcv0  28351
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-tpos 6133  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-n 9680  df-2 9737  df-3 9738  df-ndx 13078  df-slot 13079  df-base 13080  df-sets 13081  df-ress 13082  df-plusg 13148  df-mulr 13149  df-0g 13331  df-mnd 14294  df-grp 14416  df-minusg 14417  df-sbg 14418  df-cmn 15018  df-abl 15019  df-mgp 15253  df-ring 15267  df-ur 15269  df-oppr 15332  df-dvdsr 15350  df-unit 15351  df-invr 15381  df-drng 15441  df-lmod 15556  df-lss 15617  df-lsp 15656  df-lvec 15783
  Copyright terms: Public domain W3C validator