Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssats Unicode version

Theorem lssats 29541
Description: The lattice of subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. Hypothesis (shatomistici 23847 analog.) (Contributed by NM, 9-Apr-2014.)
Hypotheses
Ref Expression
lssats.s  |-  S  =  ( LSubSp `  W )
lssats.n  |-  N  =  ( LSpan `  W )
lssats.a  |-  A  =  (LSAtoms `  W )
Assertion
Ref Expression
lssats  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  =  ( N `  U. { x  e.  A  |  x  C_  U }
) )
Distinct variable groups:    x, A    x, N    x, S    x, U
Allowed substitution hint:    W( x)

Proof of Theorem lssats
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq1 2490 . . . . 5  |-  ( y  =  ( 0g `  W )  ->  (
y  e.  ( N `
 U. { x  e.  A  |  x  C_  U } )  <->  ( 0g `  W )  e.  ( N `  U. {
x  e.  A  |  x  C_  U } ) ) )
2 simplll 735 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  W  e.  LMod )
3 simpllr 736 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  U  e.  S )
4 simplr 732 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  e.  U )
5 eqid 2430 . . . . . . . . . . 11  |-  ( Base `  W )  =  (
Base `  W )
6 lssats.s . . . . . . . . . . 11  |-  S  =  ( LSubSp `  W )
75, 6lssel 15997 . . . . . . . . . 10  |-  ( ( U  e.  S  /\  y  e.  U )  ->  y  e.  ( Base `  W ) )
83, 4, 7syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  e.  ( Base `  W
) )
9 lssats.n . . . . . . . . . 10  |-  N  =  ( LSpan `  W )
105, 6, 9lspsncl 16036 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  y  e.  ( Base `  W
) )  ->  ( N `  { y } )  e.  S
)
112, 8, 10syl2anc 643 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  e.  S
)
126, 9lspid 16041 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( N `  { y } )  e.  S
)  ->  ( N `  ( N `  {
y } ) )  =  ( N `  { y } ) )
132, 11, 12syl2anc 643 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  ( N `  { y } ) )  =  ( N `
 { y } ) )
14 lssats.a . . . . . . . . . . . . 13  |-  A  =  (LSAtoms `  W )
156, 14lsatlss 29525 . . . . . . . . . . . 12  |-  ( W  e.  LMod  ->  A  C_  S )
1615adantr 452 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  A  C_  S )
17 rabss2 3413 . . . . . . . . . . 11  |-  ( A 
C_  S  ->  { x  e.  A  |  x  C_  U }  C_  { x  e.  S  |  x  C_  U } )
18 uniss 4023 . . . . . . . . . . 11  |-  ( { x  e.  A  |  x  C_  U }  C_  { x  e.  S  |  x  C_  U }  ->  U. { x  e.  A  |  x  C_  U }  C_ 
U. { x  e.  S  |  x  C_  U } )
1916, 17, 183syl 19 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U. {
x  e.  A  |  x  C_  U }  C_  U. { x  e.  S  |  x  C_  U }
)
20 unimax 4036 . . . . . . . . . . . 12  |-  ( U  e.  S  ->  U. {
x  e.  S  |  x  C_  U }  =  U )
215, 6lssss 15996 . . . . . . . . . . . 12  |-  ( U  e.  S  ->  U  C_  ( Base `  W
) )
2220, 21eqsstrd 3369 . . . . . . . . . . 11  |-  ( U  e.  S  ->  U. {
x  e.  S  |  x  C_  U }  C_  ( Base `  W )
)
2322adantl 453 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U. {
x  e.  S  |  x  C_  U }  C_  ( Base `  W )
)
2419, 23sstrd 3345 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U. {
x  e.  A  |  x  C_  U }  C_  ( Base `  W )
)
2524ad2antrr 707 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  U. {
x  e.  A  |  x  C_  U }  C_  ( Base `  W )
)
26 simpr 448 . . . . . . . . . . 11  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  =/=  ( 0g `  W
) )
27 eqid 2430 . . . . . . . . . . . 12  |-  ( 0g
`  W )  =  ( 0g `  W
)
285, 9, 27, 14lsatlspsn2 29521 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  y  e.  ( Base `  W
)  /\  y  =/=  ( 0g `  W ) )  ->  ( N `  { y } )  e.  A )
292, 8, 26, 28syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  e.  A
)
306, 9, 2, 3, 4lspsnel5a 16055 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  C_  U
)
31 sseq1 3356 . . . . . . . . . . 11  |-  ( x  =  ( N `  { y } )  ->  ( x  C_  U 
<->  ( N `  {
y } )  C_  U ) )
3231elrab 3079 . . . . . . . . . 10  |-  ( ( N `  { y } )  e.  {
x  e.  A  |  x  C_  U }  <->  ( ( N `  { y } )  e.  A  /\  ( N `  {
y } )  C_  U ) )
3329, 30, 32sylanbrc 646 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  e.  {
x  e.  A  |  x  C_  U } )
34 elssuni 4030 . . . . . . . . 9  |-  ( ( N `  { y } )  e.  {
x  e.  A  |  x  C_  U }  ->  ( N `  { y } )  C_  U. {
x  e.  A  |  x  C_  U } )
3533, 34syl 16 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  C_  U. {
x  e.  A  |  x  C_  U } )
365, 9lspss 16043 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  U. { x  e.  A  |  x  C_  U }  C_  ( Base `  W
)  /\  ( N `  { y } ) 
C_  U. { x  e.  A  |  x  C_  U } )  ->  ( N `  ( N `  { y } ) )  C_  ( N `  U. { x  e.  A  |  x  C_  U } ) )
372, 25, 35, 36syl3anc 1184 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  ( N `  { y } ) )  C_  ( N `  U. { x  e.  A  |  x  C_  U } ) )
3813, 37eqsstr3d 3370 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  C_  ( N `  U. { x  e.  A  |  x  C_  U } ) )
395, 9lspsnid 16052 . . . . . . 7  |-  ( ( W  e.  LMod  /\  y  e.  ( Base `  W
) )  ->  y  e.  ( N `  {
y } ) )
402, 8, 39syl2anc 643 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  e.  ( N `  {
y } ) )
4138, 40sseldd 3336 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  e.  ( N `  U. { x  e.  A  |  x  C_  U }
) )
42 simpll 731 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  y  e.  U
)  ->  W  e.  LMod )
435, 6, 9lspcl 16035 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  U. { x  e.  A  |  x  C_  U }  C_  ( Base `  W
) )  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  e.  S )
4424, 43syldan 457 . . . . . . 7  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  e.  S )
4544adantr 452 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  y  e.  U
)  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  e.  S
)
4627, 6lss0cl 16006 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( N `  U. { x  e.  A  |  x  C_  U } )  e.  S )  ->  ( 0g `  W )  e.  ( N `  U. { x  e.  A  |  x  C_  U }
) )
4742, 45, 46syl2anc 643 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  y  e.  U
)  ->  ( 0g `  W )  e.  ( N `  U. {
x  e.  A  |  x  C_  U } ) )
481, 41, 47pm2.61ne 2668 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  y  e.  U
)  ->  y  e.  ( N `  U. {
x  e.  A  |  x  C_  U } ) )
4948ex 424 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (
y  e.  U  -> 
y  e.  ( N `
 U. { x  e.  A  |  x  C_  U } ) ) )
5049ssrdv 3341 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  C_  ( N `  U. { x  e.  A  |  x  C_  U }
) )
51 simpl 444 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  W  e.  LMod )
525, 9lspss 16043 . . . 4  |-  ( ( W  e.  LMod  /\  U. { x  e.  S  |  x  C_  U }  C_  ( Base `  W
)  /\  U. { x  e.  A  |  x  C_  U }  C_  U. {
x  e.  S  |  x  C_  U } )  ->  ( N `  U. { x  e.  A  |  x  C_  U }
)  C_  ( N `  U. { x  e.  S  |  x  C_  U } ) )
5351, 23, 19, 52syl3anc 1184 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  C_  ( N `  U. {
x  e.  S  |  x  C_  U } ) )
5420adantl 453 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U. {
x  e.  S  |  x  C_  U }  =  U )
5554fveq2d 5718 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  S  |  x  C_  U } )  =  ( N `  U
) )
566, 9lspid 16041 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U )  =  U )
5755, 56eqtrd 2462 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  S  |  x  C_  U } )  =  U )
5853, 57sseqtrd 3371 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  C_  U )
5950, 58eqssd 3352 1  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  =  ( N `  U. { x  e.  A  |  x  C_  U }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2593   {crab 2696    C_ wss 3307   {csn 3801   U.cuni 4002   ` cfv 5440   Basecbs 13452   0gc0g 13706   LModclmod 15933   LSubSpclss 15991   LSpanclspn 16030  LSAtomsclsa 29503
This theorem is referenced by:  lpssat  29542  lssatle  29544  lssat  29545
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-rep 4307  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687  ax-cnex 9030  ax-resscn 9031  ax-1cn 9032  ax-icn 9033  ax-addcl 9034  ax-addrcl 9035  ax-mulcl 9036  ax-mulrcl 9037  ax-mulcom 9038  ax-addass 9039  ax-mulass 9040  ax-distr 9041  ax-i2m1 9042  ax-1ne0 9043  ax-1rid 9044  ax-rnegex 9045  ax-rrecex 9046  ax-cnre 9047  ax-pre-lttri 9048  ax-pre-lttrn 9049  ax-pre-ltadd 9050  ax-pre-mulgt0 9051
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rmo 2700  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-tp 3809  df-op 3810  df-uni 4003  df-int 4038  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-tr 4290  df-eprel 4481  df-id 4485  df-po 4490  df-so 4491  df-fr 4528  df-we 4530  df-ord 4571  df-on 4572  df-lim 4573  df-suc 4574  df-om 4832  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-1st 6335  df-2nd 6336  df-riota 6535  df-recs 6619  df-rdg 6654  df-er 6891  df-en 7096  df-dom 7097  df-sdom 7098  df-pnf 9106  df-mnf 9107  df-xr 9108  df-ltxr 9109  df-le 9110  df-sub 9277  df-neg 9278  df-nn 9985  df-2 10042  df-ndx 13455  df-slot 13456  df-base 13457  df-sets 13458  df-plusg 13525  df-0g 13710  df-mnd 14673  df-grp 14795  df-minusg 14796  df-sbg 14797  df-mgp 15632  df-rng 15646  df-ur 15648  df-lmod 15935  df-lss 15992  df-lsp 16031  df-lsatoms 29505
  Copyright terms: Public domain W3C validator