Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssats Unicode version

Theorem lssats 28471
Description: The lattice of subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. Hypothesis (shatomistici 22935 analog.) (Contributed by NM, 9-Apr-2014.)
Hypotheses
Ref Expression
lssats.s  |-  S  =  ( LSubSp `  W )
lssats.n  |-  N  =  ( LSpan `  W )
lssats.a  |-  A  =  (LSAtoms `  W )
Assertion
Ref Expression
lssats  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  =  ( N `  U. { x  e.  A  |  x  C_  U }
) )
Distinct variable groups:    x, A    x, N    x, S    x, U
Dummy variable  y is distinct from all other variables.
Allowed substitution group:    W( x)

Proof of Theorem lssats
StepHypRef Expression
1 eleq1 2346 . . . . 5  |-  ( y  =  ( 0g `  W )  ->  (
y  e.  ( N `
 U. { x  e.  A  |  x  C_  U } )  <->  ( 0g `  W )  e.  ( N `  U. {
x  e.  A  |  x  C_  U } ) ) )
2 simplll 736 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  W  e.  LMod )
3 simpllr 737 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  U  e.  S )
4 simplr 733 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  e.  U )
5 eqid 2286 . . . . . . . . . . 11  |-  ( Base `  W )  =  (
Base `  W )
6 lssats.s . . . . . . . . . . 11  |-  S  =  ( LSubSp `  W )
75, 6lssel 15691 . . . . . . . . . 10  |-  ( ( U  e.  S  /\  y  e.  U )  ->  y  e.  ( Base `  W ) )
83, 4, 7syl2anc 644 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  e.  ( Base `  W
) )
9 lssats.n . . . . . . . . . 10  |-  N  =  ( LSpan `  W )
105, 6, 9lspsncl 15730 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  y  e.  ( Base `  W
) )  ->  ( N `  { y } )  e.  S
)
112, 8, 10syl2anc 644 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  e.  S
)
126, 9lspid 15735 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( N `  { y } )  e.  S
)  ->  ( N `  ( N `  {
y } ) )  =  ( N `  { y } ) )
132, 11, 12syl2anc 644 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  ( N `  { y } ) )  =  ( N `
 { y } ) )
14 lssats.a . . . . . . . . . . . . 13  |-  A  =  (LSAtoms `  W )
156, 14lsatlss 28455 . . . . . . . . . . . 12  |-  ( W  e.  LMod  ->  A  C_  S )
1615adantr 453 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  A  C_  S )
17 rabss2 3259 . . . . . . . . . . 11  |-  ( A 
C_  S  ->  { x  e.  A  |  x  C_  U }  C_  { x  e.  S  |  x  C_  U } )
18 uniss 3851 . . . . . . . . . . 11  |-  ( { x  e.  A  |  x  C_  U }  C_  { x  e.  S  |  x  C_  U }  ->  U. { x  e.  A  |  x  C_  U }  C_ 
U. { x  e.  S  |  x  C_  U } )
1916, 17, 183syl 20 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U. {
x  e.  A  |  x  C_  U }  C_  U. { x  e.  S  |  x  C_  U }
)
20 unimax 3864 . . . . . . . . . . . 12  |-  ( U  e.  S  ->  U. {
x  e.  S  |  x  C_  U }  =  U )
215, 6lssss 15690 . . . . . . . . . . . 12  |-  ( U  e.  S  ->  U  C_  ( Base `  W
) )
2220, 21eqsstrd 3215 . . . . . . . . . . 11  |-  ( U  e.  S  ->  U. {
x  e.  S  |  x  C_  U }  C_  ( Base `  W )
)
2322adantl 454 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U. {
x  e.  S  |  x  C_  U }  C_  ( Base `  W )
)
2419, 23sstrd 3192 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U. {
x  e.  A  |  x  C_  U }  C_  ( Base `  W )
)
2524ad2antrr 708 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  U. {
x  e.  A  |  x  C_  U }  C_  ( Base `  W )
)
26 simpr 449 . . . . . . . . . . 11  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  =/=  ( 0g `  W
) )
27 eqid 2286 . . . . . . . . . . . 12  |-  ( 0g
`  W )  =  ( 0g `  W
)
285, 9, 27, 14lsatlspsn2 28451 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  y  e.  ( Base `  W
)  /\  y  =/=  ( 0g `  W ) )  ->  ( N `  { y } )  e.  A )
292, 8, 26, 28syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  e.  A
)
306, 9, 2, 3, 4lspsnel5a 15749 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  C_  U
)
31 sseq1 3202 . . . . . . . . . . 11  |-  ( x  =  ( N `  { y } )  ->  ( x  C_  U 
<->  ( N `  {
y } )  C_  U ) )
3231elrab 2926 . . . . . . . . . 10  |-  ( ( N `  { y } )  e.  {
x  e.  A  |  x  C_  U }  <->  ( ( N `  { y } )  e.  A  /\  ( N `  {
y } )  C_  U ) )
3329, 30, 32sylanbrc 647 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  e.  {
x  e.  A  |  x  C_  U } )
34 elssuni 3858 . . . . . . . . 9  |-  ( ( N `  { y } )  e.  {
x  e.  A  |  x  C_  U }  ->  ( N `  { y } )  C_  U. {
x  e.  A  |  x  C_  U } )
3533, 34syl 17 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  C_  U. {
x  e.  A  |  x  C_  U } )
365, 9lspss 15737 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  U. { x  e.  A  |  x  C_  U }  C_  ( Base `  W
)  /\  ( N `  { y } ) 
C_  U. { x  e.  A  |  x  C_  U } )  ->  ( N `  ( N `  { y } ) )  C_  ( N `  U. { x  e.  A  |  x  C_  U } ) )
372, 25, 35, 36syl3anc 1184 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  ( N `  { y } ) )  C_  ( N `  U. { x  e.  A  |  x  C_  U } ) )
3813, 37eqsstr3d 3216 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  C_  ( N `  U. { x  e.  A  |  x  C_  U } ) )
395, 9lspsnid 15746 . . . . . . 7  |-  ( ( W  e.  LMod  /\  y  e.  ( Base `  W
) )  ->  y  e.  ( N `  {
y } ) )
402, 8, 39syl2anc 644 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  e.  ( N `  {
y } ) )
4138, 40sseldd 3184 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  e.  ( N `  U. { x  e.  A  |  x  C_  U }
) )
42 simpll 732 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  y  e.  U
)  ->  W  e.  LMod )
435, 6, 9lspcl 15729 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  U. { x  e.  A  |  x  C_  U }  C_  ( Base `  W
) )  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  e.  S )
4424, 43syldan 458 . . . . . . 7  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  e.  S )
4544adantr 453 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  y  e.  U
)  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  e.  S
)
4627, 6lss0cl 15700 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( N `  U. { x  e.  A  |  x  C_  U } )  e.  S )  ->  ( 0g `  W )  e.  ( N `  U. { x  e.  A  |  x  C_  U }
) )
4742, 45, 46syl2anc 644 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  y  e.  U
)  ->  ( 0g `  W )  e.  ( N `  U. {
x  e.  A  |  x  C_  U } ) )
481, 41, 47pm2.61ne 2524 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  y  e.  U
)  ->  y  e.  ( N `  U. {
x  e.  A  |  x  C_  U } ) )
4948ex 425 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (
y  e.  U  -> 
y  e.  ( N `
 U. { x  e.  A  |  x  C_  U } ) ) )
5049ssrdv 3188 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  C_  ( N `  U. { x  e.  A  |  x  C_  U }
) )
51 simpl 445 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  W  e.  LMod )
525, 9lspss 15737 . . . 4  |-  ( ( W  e.  LMod  /\  U. { x  e.  S  |  x  C_  U }  C_  ( Base `  W
)  /\  U. { x  e.  A  |  x  C_  U }  C_  U. {
x  e.  S  |  x  C_  U } )  ->  ( N `  U. { x  e.  A  |  x  C_  U }
)  C_  ( N `  U. { x  e.  S  |  x  C_  U } ) )
5351, 23, 19, 52syl3anc 1184 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  C_  ( N `  U. {
x  e.  S  |  x  C_  U } ) )
5420adantl 454 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U. {
x  e.  S  |  x  C_  U }  =  U )
5554fveq2d 5491 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  S  |  x  C_  U } )  =  ( N `  U
) )
566, 9lspid 15735 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U )  =  U )
5755, 56eqtrd 2318 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  S  |  x  C_  U } )  =  U )
5853, 57sseqtrd 3217 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  C_  U )
5950, 58eqssd 3199 1  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  =  ( N `  U. { x  e.  A  |  x  C_  U }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1625    e. wcel 1687    =/= wne 2449   {crab 2550    C_ wss 3155   {csn 3643   U.cuni 3830   ` cfv 5223   Basecbs 13144   0gc0g 13396   LModclmod 15623   LSubSpclss 15685   LSpanclspn 15724  LSAtomsclsa 28433
This theorem is referenced by:  lpssat  28472  lssatle  28474  lssat  28475
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1638  ax-8 1646  ax-13 1689  ax-14 1691  ax-6 1706  ax-7 1711  ax-11 1718  ax-12 1870  ax-ext 2267  ax-rep 4134  ax-sep 4144  ax-nul 4152  ax-pow 4189  ax-pr 4215  ax-un 4513  ax-cnex 8790  ax-resscn 8791  ax-1cn 8792  ax-icn 8793  ax-addcl 8794  ax-addrcl 8795  ax-mulcl 8796  ax-mulrcl 8797  ax-mulcom 8798  ax-addass 8799  ax-mulass 8800  ax-distr 8801  ax-i2m1 8802  ax-1ne0 8803  ax-1rid 8804  ax-rnegex 8805  ax-rrecex 8806  ax-cnre 8807  ax-pre-lttri 8808  ax-pre-lttrn 8809  ax-pre-ltadd 8810  ax-pre-mulgt0 8811
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1531  df-nf 1534  df-sb 1633  df-eu 2150  df-mo 2151  df-clab 2273  df-cleq 2279  df-clel 2282  df-nfc 2411  df-ne 2451  df-nel 2452  df-ral 2551  df-rex 2552  df-reu 2553  df-rmo 2554  df-rab 2555  df-v 2793  df-sbc 2995  df-csb 3085  df-dif 3158  df-un 3160  df-in 3162  df-ss 3169  df-pss 3171  df-nul 3459  df-if 3569  df-pw 3630  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3831  df-int 3866  df-iun 3910  df-br 4027  df-opab 4081  df-mpt 4082  df-tr 4117  df-eprel 4306  df-id 4310  df-po 4315  df-so 4316  df-fr 4353  df-we 4355  df-ord 4396  df-on 4397  df-lim 4398  df-suc 4399  df-om 4658  df-xp 4696  df-rel 4697  df-cnv 4698  df-co 4699  df-dm 4700  df-rn 4701  df-res 4702  df-ima 4703  df-fun 5225  df-fn 5226  df-f 5227  df-f1 5228  df-fo 5229  df-f1o 5230  df-fv 5231  df-ov 5824  df-oprab 5825  df-mpt2 5826  df-1st 6085  df-2nd 6086  df-iota 6254  df-riota 6301  df-recs 6385  df-rdg 6420  df-er 6657  df-en 6861  df-dom 6862  df-sdom 6863  df-pnf 8866  df-mnf 8867  df-xr 8868  df-ltxr 8869  df-le 8870  df-sub 9036  df-neg 9037  df-nn 9744  df-2 9801  df-ndx 13147  df-slot 13148  df-base 13149  df-sets 13150  df-plusg 13217  df-0g 13400  df-mnd 14363  df-grp 14485  df-minusg 14486  df-sbg 14487  df-mgp 15322  df-rng 15336  df-ur 15338  df-lmod 15625  df-lss 15686  df-lsp 15725  df-lsatoms 28435
  Copyright terms: Public domain W3C validator