Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssats Unicode version

Theorem lssats 28369
Description: The lattice of subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. Hypothesis (shatomistici 22901 analog.) (Contributed by NM, 9-Apr-2014.)
Hypotheses
Ref Expression
lssats.s  |-  S  =  ( LSubSp `  W )
lssats.n  |-  N  =  ( LSpan `  W )
lssats.a  |-  A  =  (LSAtoms `  W )
Assertion
Ref Expression
lssats  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  =  ( N `  U. { x  e.  A  |  x  C_  U }
) )
Distinct variable groups:    x, A    x, N    x, S    x, U
Allowed substitution hint:    W( x)

Proof of Theorem lssats
StepHypRef Expression
1 eleq1 2318 . . . . 5  |-  ( y  =  ( 0g `  W )  ->  (
y  e.  ( N `
 U. { x  e.  A  |  x  C_  U } )  <->  ( 0g `  W )  e.  ( N `  U. {
x  e.  A  |  x  C_  U } ) ) )
2 simplll 737 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  W  e.  LMod )
3 simpllr 738 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  U  e.  S )
4 simplr 734 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  e.  U )
5 eqid 2258 . . . . . . . . . . 11  |-  ( Base `  W )  =  (
Base `  W )
6 lssats.s . . . . . . . . . . 11  |-  S  =  ( LSubSp `  W )
75, 6lssel 15657 . . . . . . . . . 10  |-  ( ( U  e.  S  /\  y  e.  U )  ->  y  e.  ( Base `  W ) )
83, 4, 7syl2anc 645 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  e.  ( Base `  W
) )
9 lssats.n . . . . . . . . . 10  |-  N  =  ( LSpan `  W )
105, 6, 9lspsncl 15696 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  y  e.  ( Base `  W
) )  ->  ( N `  { y } )  e.  S
)
112, 8, 10syl2anc 645 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  e.  S
)
126, 9lspid 15701 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( N `  { y } )  e.  S
)  ->  ( N `  ( N `  {
y } ) )  =  ( N `  { y } ) )
132, 11, 12syl2anc 645 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  ( N `  { y } ) )  =  ( N `
 { y } ) )
14 lssats.a . . . . . . . . . . . . 13  |-  A  =  (LSAtoms `  W )
156, 14lsatlss 28353 . . . . . . . . . . . 12  |-  ( W  e.  LMod  ->  A  C_  S )
1615adantr 453 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  A  C_  S )
17 rabss2 3231 . . . . . . . . . . 11  |-  ( A 
C_  S  ->  { x  e.  A  |  x  C_  U }  C_  { x  e.  S  |  x  C_  U } )
18 uniss 3822 . . . . . . . . . . 11  |-  ( { x  e.  A  |  x  C_  U }  C_  { x  e.  S  |  x  C_  U }  ->  U. { x  e.  A  |  x  C_  U }  C_ 
U. { x  e.  S  |  x  C_  U } )
1916, 17, 183syl 20 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U. {
x  e.  A  |  x  C_  U }  C_  U. { x  e.  S  |  x  C_  U }
)
20 unimax 3835 . . . . . . . . . . . 12  |-  ( U  e.  S  ->  U. {
x  e.  S  |  x  C_  U }  =  U )
215, 6lssss 15656 . . . . . . . . . . . 12  |-  ( U  e.  S  ->  U  C_  ( Base `  W
) )
2220, 21eqsstrd 3187 . . . . . . . . . . 11  |-  ( U  e.  S  ->  U. {
x  e.  S  |  x  C_  U }  C_  ( Base `  W )
)
2322adantl 454 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U. {
x  e.  S  |  x  C_  U }  C_  ( Base `  W )
)
2419, 23sstrd 3164 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U. {
x  e.  A  |  x  C_  U }  C_  ( Base `  W )
)
2524ad2antrr 709 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  U. {
x  e.  A  |  x  C_  U }  C_  ( Base `  W )
)
26 simpr 449 . . . . . . . . . . 11  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  =/=  ( 0g `  W
) )
27 eqid 2258 . . . . . . . . . . . 12  |-  ( 0g
`  W )  =  ( 0g `  W
)
285, 9, 27, 14lsatlspsn2 28349 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  y  e.  ( Base `  W
)  /\  y  =/=  ( 0g `  W ) )  ->  ( N `  { y } )  e.  A )
292, 8, 26, 28syl3anc 1187 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  e.  A
)
306, 9, 2, 3, 4lspsnel5a 15715 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  C_  U
)
31 sseq1 3174 . . . . . . . . . . 11  |-  ( x  =  ( N `  { y } )  ->  ( x  C_  U 
<->  ( N `  {
y } )  C_  U ) )
3231elrab 2898 . . . . . . . . . 10  |-  ( ( N `  { y } )  e.  {
x  e.  A  |  x  C_  U }  <->  ( ( N `  { y } )  e.  A  /\  ( N `  {
y } )  C_  U ) )
3329, 30, 32sylanbrc 648 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  e.  {
x  e.  A  |  x  C_  U } )
34 elssuni 3829 . . . . . . . . 9  |-  ( ( N `  { y } )  e.  {
x  e.  A  |  x  C_  U }  ->  ( N `  { y } )  C_  U. {
x  e.  A  |  x  C_  U } )
3533, 34syl 17 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  C_  U. {
x  e.  A  |  x  C_  U } )
365, 9lspss 15703 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  U. { x  e.  A  |  x  C_  U }  C_  ( Base `  W
)  /\  ( N `  { y } ) 
C_  U. { x  e.  A  |  x  C_  U } )  ->  ( N `  ( N `  { y } ) )  C_  ( N `  U. { x  e.  A  |  x  C_  U } ) )
372, 25, 35, 36syl3anc 1187 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  ( N `  { y } ) )  C_  ( N `  U. { x  e.  A  |  x  C_  U } ) )
3813, 37eqsstr3d 3188 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  C_  ( N `  U. { x  e.  A  |  x  C_  U } ) )
395, 9lspsnid 15712 . . . . . . 7  |-  ( ( W  e.  LMod  /\  y  e.  ( Base `  W
) )  ->  y  e.  ( N `  {
y } ) )
402, 8, 39syl2anc 645 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  e.  ( N `  {
y } ) )
4138, 40sseldd 3156 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  e.  ( N `  U. { x  e.  A  |  x  C_  U }
) )
42 simpll 733 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  y  e.  U
)  ->  W  e.  LMod )
435, 6, 9lspcl 15695 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  U. { x  e.  A  |  x  C_  U }  C_  ( Base `  W
) )  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  e.  S )
4424, 43syldan 458 . . . . . . 7  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  e.  S )
4544adantr 453 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  y  e.  U
)  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  e.  S
)
4627, 6lss0cl 15666 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( N `  U. { x  e.  A  |  x  C_  U } )  e.  S )  ->  ( 0g `  W )  e.  ( N `  U. { x  e.  A  |  x  C_  U }
) )
4742, 45, 46syl2anc 645 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  y  e.  U
)  ->  ( 0g `  W )  e.  ( N `  U. {
x  e.  A  |  x  C_  U } ) )
481, 41, 47pm2.61ne 2496 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  y  e.  U
)  ->  y  e.  ( N `  U. {
x  e.  A  |  x  C_  U } ) )
4948ex 425 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (
y  e.  U  -> 
y  e.  ( N `
 U. { x  e.  A  |  x  C_  U } ) ) )
5049ssrdv 3160 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  C_  ( N `  U. { x  e.  A  |  x  C_  U }
) )
51 simpl 445 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  W  e.  LMod )
525, 9lspss 15703 . . . 4  |-  ( ( W  e.  LMod  /\  U. { x  e.  S  |  x  C_  U }  C_  ( Base `  W
)  /\  U. { x  e.  A  |  x  C_  U }  C_  U. {
x  e.  S  |  x  C_  U } )  ->  ( N `  U. { x  e.  A  |  x  C_  U }
)  C_  ( N `  U. { x  e.  S  |  x  C_  U } ) )
5351, 23, 19, 52syl3anc 1187 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  C_  ( N `  U. {
x  e.  S  |  x  C_  U } ) )
5420adantl 454 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U. {
x  e.  S  |  x  C_  U }  =  U )
5554fveq2d 5462 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  S  |  x  C_  U } )  =  ( N `  U
) )
566, 9lspid 15701 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U )  =  U )
5755, 56eqtrd 2290 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  S  |  x  C_  U } )  =  U )
5853, 57sseqtrd 3189 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  C_  U )
5950, 58eqssd 3171 1  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  =  ( N `  U. { x  e.  A  |  x  C_  U }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2421   {crab 2522    C_ wss 3127   {csn 3614   U.cuni 3801   ` cfv 4673   Basecbs 13110   0gc0g 13362   LModclmod 15589   LSubSpclss 15651   LSpanclspn 15690  LSAtomsclsa 28331
This theorem is referenced by:  lpssat  28370  lssatle  28372  lssat  28373
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-n 9715  df-2 9772  df-ndx 13113  df-slot 13114  df-base 13115  df-sets 13116  df-plusg 13183  df-0g 13366  df-mnd 14329  df-grp 14451  df-minusg 14452  df-sbg 14453  df-mgp 15288  df-ring 15302  df-ur 15304  df-lmod 15591  df-lss 15652  df-lsp 15691  df-lsatoms 28333
  Copyright terms: Public domain W3C validator