Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssats Unicode version

Theorem lssats 29020
Description: The lattice of subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. Hypothesis (shatomistici 22996 analog.) (Contributed by NM, 9-Apr-2014.)
Hypotheses
Ref Expression
lssats.s  |-  S  =  ( LSubSp `  W )
lssats.n  |-  N  =  ( LSpan `  W )
lssats.a  |-  A  =  (LSAtoms `  W )
Assertion
Ref Expression
lssats  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  =  ( N `  U. { x  e.  A  |  x  C_  U }
) )
Distinct variable groups:    x, A    x, N    x, S    x, U
Allowed substitution hint:    W( x)

Proof of Theorem lssats
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq1 2376 . . . . 5  |-  ( y  =  ( 0g `  W )  ->  (
y  e.  ( N `
 U. { x  e.  A  |  x  C_  U } )  <->  ( 0g `  W )  e.  ( N `  U. {
x  e.  A  |  x  C_  U } ) ) )
2 simplll 734 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  W  e.  LMod )
3 simpllr 735 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  U  e.  S )
4 simplr 731 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  e.  U )
5 eqid 2316 . . . . . . . . . . 11  |-  ( Base `  W )  =  (
Base `  W )
6 lssats.s . . . . . . . . . . 11  |-  S  =  ( LSubSp `  W )
75, 6lssel 15744 . . . . . . . . . 10  |-  ( ( U  e.  S  /\  y  e.  U )  ->  y  e.  ( Base `  W ) )
83, 4, 7syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  e.  ( Base `  W
) )
9 lssats.n . . . . . . . . . 10  |-  N  =  ( LSpan `  W )
105, 6, 9lspsncl 15783 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  y  e.  ( Base `  W
) )  ->  ( N `  { y } )  e.  S
)
112, 8, 10syl2anc 642 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  e.  S
)
126, 9lspid 15788 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( N `  { y } )  e.  S
)  ->  ( N `  ( N `  {
y } ) )  =  ( N `  { y } ) )
132, 11, 12syl2anc 642 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  ( N `  { y } ) )  =  ( N `
 { y } ) )
14 lssats.a . . . . . . . . . . . . 13  |-  A  =  (LSAtoms `  W )
156, 14lsatlss 29004 . . . . . . . . . . . 12  |-  ( W  e.  LMod  ->  A  C_  S )
1615adantr 451 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  A  C_  S )
17 rabss2 3290 . . . . . . . . . . 11  |-  ( A 
C_  S  ->  { x  e.  A  |  x  C_  U }  C_  { x  e.  S  |  x  C_  U } )
18 uniss 3885 . . . . . . . . . . 11  |-  ( { x  e.  A  |  x  C_  U }  C_  { x  e.  S  |  x  C_  U }  ->  U. { x  e.  A  |  x  C_  U }  C_ 
U. { x  e.  S  |  x  C_  U } )
1916, 17, 183syl 18 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U. {
x  e.  A  |  x  C_  U }  C_  U. { x  e.  S  |  x  C_  U }
)
20 unimax 3898 . . . . . . . . . . . 12  |-  ( U  e.  S  ->  U. {
x  e.  S  |  x  C_  U }  =  U )
215, 6lssss 15743 . . . . . . . . . . . 12  |-  ( U  e.  S  ->  U  C_  ( Base `  W
) )
2220, 21eqsstrd 3246 . . . . . . . . . . 11  |-  ( U  e.  S  ->  U. {
x  e.  S  |  x  C_  U }  C_  ( Base `  W )
)
2322adantl 452 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U. {
x  e.  S  |  x  C_  U }  C_  ( Base `  W )
)
2419, 23sstrd 3223 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U. {
x  e.  A  |  x  C_  U }  C_  ( Base `  W )
)
2524ad2antrr 706 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  U. {
x  e.  A  |  x  C_  U }  C_  ( Base `  W )
)
26 simpr 447 . . . . . . . . . . 11  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  =/=  ( 0g `  W
) )
27 eqid 2316 . . . . . . . . . . . 12  |-  ( 0g
`  W )  =  ( 0g `  W
)
285, 9, 27, 14lsatlspsn2 29000 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  y  e.  ( Base `  W
)  /\  y  =/=  ( 0g `  W ) )  ->  ( N `  { y } )  e.  A )
292, 8, 26, 28syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  e.  A
)
306, 9, 2, 3, 4lspsnel5a 15802 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  C_  U
)
31 sseq1 3233 . . . . . . . . . . 11  |-  ( x  =  ( N `  { y } )  ->  ( x  C_  U 
<->  ( N `  {
y } )  C_  U ) )
3231elrab 2957 . . . . . . . . . 10  |-  ( ( N `  { y } )  e.  {
x  e.  A  |  x  C_  U }  <->  ( ( N `  { y } )  e.  A  /\  ( N `  {
y } )  C_  U ) )
3329, 30, 32sylanbrc 645 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  e.  {
x  e.  A  |  x  C_  U } )
34 elssuni 3892 . . . . . . . . 9  |-  ( ( N `  { y } )  e.  {
x  e.  A  |  x  C_  U }  ->  ( N `  { y } )  C_  U. {
x  e.  A  |  x  C_  U } )
3533, 34syl 15 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  C_  U. {
x  e.  A  |  x  C_  U } )
365, 9lspss 15790 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  U. { x  e.  A  |  x  C_  U }  C_  ( Base `  W
)  /\  ( N `  { y } ) 
C_  U. { x  e.  A  |  x  C_  U } )  ->  ( N `  ( N `  { y } ) )  C_  ( N `  U. { x  e.  A  |  x  C_  U } ) )
372, 25, 35, 36syl3anc 1182 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  ( N `  { y } ) )  C_  ( N `  U. { x  e.  A  |  x  C_  U } ) )
3813, 37eqsstr3d 3247 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  C_  ( N `  U. { x  e.  A  |  x  C_  U } ) )
395, 9lspsnid 15799 . . . . . . 7  |-  ( ( W  e.  LMod  /\  y  e.  ( Base `  W
) )  ->  y  e.  ( N `  {
y } ) )
402, 8, 39syl2anc 642 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  e.  ( N `  {
y } ) )
4138, 40sseldd 3215 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  e.  ( N `  U. { x  e.  A  |  x  C_  U }
) )
42 simpll 730 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  y  e.  U
)  ->  W  e.  LMod )
435, 6, 9lspcl 15782 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  U. { x  e.  A  |  x  C_  U }  C_  ( Base `  W
) )  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  e.  S )
4424, 43syldan 456 . . . . . . 7  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  e.  S )
4544adantr 451 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  y  e.  U
)  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  e.  S
)
4627, 6lss0cl 15753 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( N `  U. { x  e.  A  |  x  C_  U } )  e.  S )  ->  ( 0g `  W )  e.  ( N `  U. { x  e.  A  |  x  C_  U }
) )
4742, 45, 46syl2anc 642 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  y  e.  U
)  ->  ( 0g `  W )  e.  ( N `  U. {
x  e.  A  |  x  C_  U } ) )
481, 41, 47pm2.61ne 2554 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  y  e.  U
)  ->  y  e.  ( N `  U. {
x  e.  A  |  x  C_  U } ) )
4948ex 423 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (
y  e.  U  -> 
y  e.  ( N `
 U. { x  e.  A  |  x  C_  U } ) ) )
5049ssrdv 3219 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  C_  ( N `  U. { x  e.  A  |  x  C_  U }
) )
51 simpl 443 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  W  e.  LMod )
525, 9lspss 15790 . . . 4  |-  ( ( W  e.  LMod  /\  U. { x  e.  S  |  x  C_  U }  C_  ( Base `  W
)  /\  U. { x  e.  A  |  x  C_  U }  C_  U. {
x  e.  S  |  x  C_  U } )  ->  ( N `  U. { x  e.  A  |  x  C_  U }
)  C_  ( N `  U. { x  e.  S  |  x  C_  U } ) )
5351, 23, 19, 52syl3anc 1182 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  C_  ( N `  U. {
x  e.  S  |  x  C_  U } ) )
5420adantl 452 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U. {
x  e.  S  |  x  C_  U }  =  U )
5554fveq2d 5567 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  S  |  x  C_  U } )  =  ( N `  U
) )
566, 9lspid 15788 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U )  =  U )
5755, 56eqtrd 2348 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  S  |  x  C_  U } )  =  U )
5853, 57sseqtrd 3248 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  C_  U )
5950, 58eqssd 3230 1  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  =  ( N `  U. { x  e.  A  |  x  C_  U }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1633    e. wcel 1701    =/= wne 2479   {crab 2581    C_ wss 3186   {csn 3674   U.cuni 3864   ` cfv 5292   Basecbs 13195   0gc0g 13449   LModclmod 15676   LSubSpclss 15738   LSpanclspn 15777  LSAtomsclsa 28982
This theorem is referenced by:  lpssat  29021  lssatle  29023  lssat  29024
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-int 3900  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-riota 6346  df-recs 6430  df-rdg 6465  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-nn 9792  df-2 9849  df-ndx 13198  df-slot 13199  df-base 13200  df-sets 13201  df-plusg 13268  df-0g 13453  df-mnd 14416  df-grp 14538  df-minusg 14539  df-sbg 14540  df-mgp 15375  df-rng 15389  df-ur 15391  df-lmod 15678  df-lss 15739  df-lsp 15778  df-lsatoms 28984
  Copyright terms: Public domain W3C validator