MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lt0neg1d Unicode version

Theorem lt0neg1d 9338
Description: Comparison of a number and its negative to zero. Theorem I.23 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
lt0neg1d  |-  ( ph  ->  ( A  <  0  <->  0  <  -u A ) )

Proof of Theorem lt0neg1d
StepHypRef Expression
1 leidd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 lt0neg1 9276 . 2  |-  ( A  e.  RR  ->  ( A  <  0  <->  0  <  -u A ) )
31, 2syl 15 1  |-  ( ph  ->  ( A  <  0  <->  0  <  -u A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    e. wcel 1685   class class class wbr 4024   RRcr 8732   0cc0 8733    < clt 8863   -ucneg 9034
This theorem is referenced by:  recgt0  9596  prodge0  9599  expneg  11107  discr1  11233  rlimrege0  12049  bitsfzo  12622  subgmulg  14631  xrhmeo  18440  mbfmulc2lem  18998  mbfposr  19003  dvferm2lem  19329  dvferm2  19330  sincosq4sgn  19865  tanabsge  19870  sinq34lt0t  19873  tanord  19896  argimlt0  19963  logdmnrp  19984  dvloglem  19991  atanlogsub  20208  atantan  20215  lgsdilem  20557  ostth3  20783  elpell14qr2  26358  jm2.24  26461
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-po 4313  df-so 4314  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-iota 6253  df-riota 6300  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036
  Copyright terms: Public domain W3C validator