MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddpr Unicode version

Theorem ltaddpr 8805
Description: The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of [Gleason] p. 123. (Contributed by NM, 26-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltaddpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  <P  ( A  +P.  B ) )

Proof of Theorem ltaddpr
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prn0 8760 . . . . 5  |-  ( B  e.  P.  ->  B  =/=  (/) )
2 n0 3552 . . . . 5  |-  ( B  =/=  (/)  <->  E. y  y  e.  B )
31, 2sylib 188 . . . 4  |-  ( B  e.  P.  ->  E. y 
y  e.  B )
43adantl 452 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. y  y  e.  B )
5 addclpr 8789 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
65adantr 451 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( x  e.  A  /\  y  e.  B
) )  ->  ( A  +P.  B )  e. 
P. )
7 df-plp 8754 . . . . . . . . . . . . 13  |-  +P.  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y  +Q  z ) } )
8 addclnq 8716 . . . . . . . . . . . . 13  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  +Q  z
)  e.  Q. )
97, 8genpprecl 8772 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  A  /\  y  e.  B )  ->  (
x  +Q  y )  e.  ( A  +P.  B ) ) )
109imp 418 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( x  e.  A  /\  y  e.  B
) )  ->  (
x  +Q  y )  e.  ( A  +P.  B ) )
11 elprnq 8762 . . . . . . . . . . . . 13  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( x  +Q  y
)  e.  ( A  +P.  B ) )  ->  ( x  +Q  y )  e.  Q. )
12 addnqf 8719 . . . . . . . . . . . . . . 15  |-  +Q  :
( Q.  X.  Q. )
--> Q.
1312fdmi 5500 . . . . . . . . . . . . . 14  |-  dom  +Q  =  ( Q.  X.  Q. )
14 0nnq 8695 . . . . . . . . . . . . . 14  |-  -.  (/)  e.  Q.
1513, 14ndmovrcl 6133 . . . . . . . . . . . . 13  |-  ( ( x  +Q  y )  e.  Q.  ->  (
x  e.  Q.  /\  y  e.  Q. )
)
16 ltaddnq 8745 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  x  <Q  ( x  +Q  y ) )
1711, 15, 163syl 18 . . . . . . . . . . . 12  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( x  +Q  y
)  e.  ( A  +P.  B ) )  ->  x  <Q  (
x  +Q  y ) )
18 prcdnq 8764 . . . . . . . . . . . 12  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( x  +Q  y
)  e.  ( A  +P.  B ) )  ->  ( x  <Q  ( x  +Q  y )  ->  x  e.  ( A  +P.  B ) ) )
1917, 18mpd 14 . . . . . . . . . . 11  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( x  +Q  y
)  e.  ( A  +P.  B ) )  ->  x  e.  ( A  +P.  B ) )
206, 10, 19syl2anc 642 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( x  e.  A  /\  y  e.  B
) )  ->  x  e.  ( A  +P.  B
) )
2120exp32 588 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  e.  A  ->  ( y  e.  B  ->  x  e.  ( A  +P.  B ) ) ) )
2221com23 72 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  ( x  e.  A  ->  x  e.  ( A  +P.  B ) ) ) )
2322alrimdv 1638 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  A. x ( x  e.  A  ->  x  e.  ( A  +P.  B
) ) ) )
24 dfss2 3255 . . . . . . 7  |-  ( A 
C_  ( A  +P.  B )  <->  A. x ( x  e.  A  ->  x  e.  ( A  +P.  B
) ) )
2523, 24syl6ibr 218 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  A  C_  ( A  +P.  B ) ) )
26 vex 2876 . . . . . . . . 9  |-  y  e. 
_V
2726prlem934 8804 . . . . . . . 8  |-  ( A  e.  P.  ->  E. x  e.  A  -.  (
x  +Q  y )  e.  A )
2827adantr 451 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. x  e.  A  -.  ( x  +Q  y
)  e.  A )
29 eleq2 2427 . . . . . . . . . . . . 13  |-  ( A  =  ( A  +P.  B )  ->  ( (
x  +Q  y )  e.  A  <->  ( x  +Q  y )  e.  ( A  +P.  B ) ) )
3029biimprcd 216 . . . . . . . . . . . 12  |-  ( ( x  +Q  y )  e.  ( A  +P.  B )  ->  ( A  =  ( A  +P.  B )  ->  ( x  +Q  y )  e.  A
) )
3130con3d 125 . . . . . . . . . . 11  |-  ( ( x  +Q  y )  e.  ( A  +P.  B )  ->  ( -.  ( x  +Q  y
)  e.  A  ->  -.  A  =  ( A  +P.  B ) ) )
329, 31syl6 29 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ( -.  ( x  +Q  y
)  e.  A  ->  -.  A  =  ( A  +P.  B ) ) ) )
3332exp3a 425 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  e.  A  ->  ( y  e.  B  ->  ( -.  ( x  +Q  y )  e.  A  ->  -.  A  =  ( A  +P.  B ) ) ) ) )
3433com34 77 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  e.  A  ->  ( -.  ( x  +Q  y )  e.  A  ->  ( y  e.  B  ->  -.  A  =  ( A  +P.  B ) ) ) ) )
3534rexlimdv 2751 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. x  e.  A  -.  ( x  +Q  y )  e.  A  ->  ( y  e.  B  ->  -.  A  =  ( A  +P.  B ) ) ) )
3628, 35mpd 14 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  -.  A  =  ( A  +P.  B ) ) )
3725, 36jcad 519 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  ( A  C_  ( A  +P.  B )  /\  -.  A  =  ( A  +P.  B ) ) ) )
38 dfpss2 3348 . . . . 5  |-  ( A 
C.  ( A  +P.  B )  <->  ( A  C_  ( A  +P.  B )  /\  -.  A  =  ( A  +P.  B
) ) )
3937, 38syl6ibr 218 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  A  C.  ( A  +P.  B ) ) )
4039exlimdv 1641 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. y  y  e.  B  ->  A  C.  ( A  +P.  B
) ) )
414, 40mpd 14 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  C.  ( A  +P.  B ) )
42 ltprord 8801 . . 3  |-  ( ( A  e.  P.  /\  ( A  +P.  B )  e.  P. )  -> 
( A  <P  ( A  +P.  B )  <->  A  C.  ( A  +P.  B ) ) )
435, 42syldan 456 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  ( A  +P.  B )  <->  A  C.  ( A  +P.  B ) ) )
4441, 43mpbird 223 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  <P  ( A  +P.  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1545   E.wex 1546    = wceq 1647    e. wcel 1715    =/= wne 2529   E.wrex 2629    C_ wss 3238    C. wpss 3239   (/)c0 3543   class class class wbr 4125    X. cxp 4790  (class class class)co 5981   Q.cnq 8621    +Q cplq 8624    <Q cltq 8627   P.cnp 8628    +P. cpp 8630    <P cltp 8632
This theorem is referenced by:  ltaddpr2  8806  ltexprlem7  8813  ltaprlem  8815  0lt1sr  8864  mappsrpr  8877
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-inf2 7489
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-recs 6530  df-rdg 6565  df-1o 6621  df-oadd 6625  df-omul 6626  df-er 6802  df-ni 8643  df-pli 8644  df-mi 8645  df-lti 8646  df-plpq 8679  df-mpq 8680  df-ltpq 8681  df-enq 8682  df-nq 8683  df-erq 8684  df-plq 8685  df-mq 8686  df-1nq 8687  df-rq 8688  df-ltnq 8689  df-np 8752  df-plp 8754  df-ltp 8756
  Copyright terms: Public domain W3C validator