MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaprlem Unicode version

Theorem ltaprlem 8670
Description: Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltaprlem  |-  ( C  e.  P.  ->  ( A  <P  B  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) )

Proof of Theorem ltaprlem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ltrelpr 8624 . . . . . 6  |-  <P  C_  ( P.  X.  P. )
21brel 4739 . . . . 5  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
32simpld 445 . . . 4  |-  ( A 
<P  B  ->  A  e. 
P. )
4 ltexpri 8669 . . . . 5  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
5 addclpr 8644 . . . . . . . 8  |-  ( ( C  e.  P.  /\  A  e.  P. )  ->  ( C  +P.  A
)  e.  P. )
6 ltaddpr 8660 . . . . . . . . . 10  |-  ( ( ( C  +P.  A
)  e.  P.  /\  x  e.  P. )  ->  ( C  +P.  A
)  <P  ( ( C  +P.  A )  +P.  x ) )
7 addasspr 8648 . . . . . . . . . . . 12  |-  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  ( A  +P.  x ) )
8 oveq2 5868 . . . . . . . . . . . 12  |-  ( ( A  +P.  x )  =  B  ->  ( C  +P.  ( A  +P.  x ) )  =  ( C  +P.  B
) )
97, 8syl5eq 2329 . . . . . . . . . . 11  |-  ( ( A  +P.  x )  =  B  ->  (
( C  +P.  A
)  +P.  x )  =  ( C  +P.  B ) )
109breq2d 4037 . . . . . . . . . 10  |-  ( ( A  +P.  x )  =  B  ->  (
( C  +P.  A
)  <P  ( ( C  +P.  A )  +P.  x )  <->  ( C  +P.  A )  <P  ( C  +P.  B ) ) )
116, 10syl5ib 210 . . . . . . . . 9  |-  ( ( A  +P.  x )  =  B  ->  (
( ( C  +P.  A )  e.  P.  /\  x  e.  P. )  ->  ( C  +P.  A
)  <P  ( C  +P.  B ) ) )
1211exp3a 425 . . . . . . . 8  |-  ( ( A  +P.  x )  =  B  ->  (
( C  +P.  A
)  e.  P.  ->  ( x  e.  P.  ->  ( C  +P.  A ) 
<P  ( C  +P.  B
) ) ) )
135, 12syl5 28 . . . . . . 7  |-  ( ( A  +P.  x )  =  B  ->  (
( C  e.  P.  /\  A  e.  P. )  ->  ( x  e.  P.  ->  ( C  +P.  A
)  <P  ( C  +P.  B ) ) ) )
1413com3r 73 . . . . . 6  |-  ( x  e.  P.  ->  (
( A  +P.  x
)  =  B  -> 
( ( C  e. 
P.  /\  A  e.  P. )  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) ) )
1514rexlimiv 2663 . . . . 5  |-  ( E. x  e.  P.  ( A  +P.  x )  =  B  ->  ( ( C  e.  P.  /\  A  e.  P. )  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) )
164, 15syl 15 . . . 4  |-  ( A 
<P  B  ->  ( ( C  e.  P.  /\  A  e.  P. )  ->  ( C  +P.  A
)  <P  ( C  +P.  B ) ) )
173, 16sylan2i 636 . . 3  |-  ( A 
<P  B  ->  ( ( C  e.  P.  /\  A  <P  B )  -> 
( C  +P.  A
)  <P  ( C  +P.  B ) ) )
1817exp3a 425 . 2  |-  ( A 
<P  B  ->  ( C  e.  P.  ->  ( A  <P  B  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) ) )
1918pm2.43b 46 1  |-  ( C  e.  P.  ->  ( A  <P  B  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   E.wrex 2546   class class class wbr 4025  (class class class)co 5860   P.cnp 8483    +P. cpp 8485    <P cltp 8487
This theorem is referenced by:  ltapr  8671
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-omul 6486  df-er 6662  df-ni 8498  df-pli 8499  df-mi 8500  df-lti 8501  df-plpq 8534  df-mpq 8535  df-ltpq 8536  df-enq 8537  df-nq 8538  df-erq 8539  df-plq 8540  df-mq 8541  df-1nq 8542  df-rq 8543  df-ltnq 8544  df-np 8607  df-plp 8609  df-ltp 8611
  Copyright terms: Public domain W3C validator