MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaprlem Unicode version

Theorem ltaprlem 8622
Description: Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltaprlem  |-  ( C  e.  P.  ->  ( A  <P  B  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) )

Proof of Theorem ltaprlem
StepHypRef Expression
1 ltrelpr 8576 . . . . . 6  |-  <P  C_  ( P.  X.  P. )
21brel 4711 . . . . 5  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
32simpld 447 . . . 4  |-  ( A 
<P  B  ->  A  e. 
P. )
4 ltexpri 8621 . . . . 5  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
5 addclpr 8596 . . . . . . . 8  |-  ( ( C  e.  P.  /\  A  e.  P. )  ->  ( C  +P.  A
)  e.  P. )
6 ltaddpr 8612 . . . . . . . . . 10  |-  ( ( ( C  +P.  A
)  e.  P.  /\  x  e.  P. )  ->  ( C  +P.  A
)  <P  ( ( C  +P.  A )  +P.  x ) )
7 addasspr 8600 . . . . . . . . . . . 12  |-  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  ( A  +P.  x ) )
8 oveq2 5786 . . . . . . . . . . . 12  |-  ( ( A  +P.  x )  =  B  ->  ( C  +P.  ( A  +P.  x ) )  =  ( C  +P.  B
) )
97, 8syl5eq 2300 . . . . . . . . . . 11  |-  ( ( A  +P.  x )  =  B  ->  (
( C  +P.  A
)  +P.  x )  =  ( C  +P.  B ) )
109breq2d 3995 . . . . . . . . . 10  |-  ( ( A  +P.  x )  =  B  ->  (
( C  +P.  A
)  <P  ( ( C  +P.  A )  +P.  x )  <->  ( C  +P.  A )  <P  ( C  +P.  B ) ) )
116, 10syl5ib 212 . . . . . . . . 9  |-  ( ( A  +P.  x )  =  B  ->  (
( ( C  +P.  A )  e.  P.  /\  x  e.  P. )  ->  ( C  +P.  A
)  <P  ( C  +P.  B ) ) )
1211exp3a 427 . . . . . . . 8  |-  ( ( A  +P.  x )  =  B  ->  (
( C  +P.  A
)  e.  P.  ->  ( x  e.  P.  ->  ( C  +P.  A ) 
<P  ( C  +P.  B
) ) ) )
135, 12syl5 30 . . . . . . 7  |-  ( ( A  +P.  x )  =  B  ->  (
( C  e.  P.  /\  A  e.  P. )  ->  ( x  e.  P.  ->  ( C  +P.  A
)  <P  ( C  +P.  B ) ) ) )
1413com3r 75 . . . . . 6  |-  ( x  e.  P.  ->  (
( A  +P.  x
)  =  B  -> 
( ( C  e. 
P.  /\  A  e.  P. )  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) ) )
1514rexlimiv 2634 . . . . 5  |-  ( E. x  e.  P.  ( A  +P.  x )  =  B  ->  ( ( C  e.  P.  /\  A  e.  P. )  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) )
164, 15syl 17 . . . 4  |-  ( A 
<P  B  ->  ( ( C  e.  P.  /\  A  e.  P. )  ->  ( C  +P.  A
)  <P  ( C  +P.  B ) ) )
173, 16sylan2i 639 . . 3  |-  ( A 
<P  B  ->  ( ( C  e.  P.  /\  A  <P  B )  -> 
( C  +P.  A
)  <P  ( C  +P.  B ) ) )
1817exp3a 427 . 2  |-  ( A 
<P  B  ->  ( C  e.  P.  ->  ( A  <P  B  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) ) )
1918pm2.43b 48 1  |-  ( C  e.  P.  ->  ( A  <P  B  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   E.wrex 2517   class class class wbr 3983  (class class class)co 5778   P.cnp 8435    +P. cpp 8437    <P cltp 8439
This theorem is referenced by:  ltapr  8623
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-inf2 7296
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-recs 6342  df-rdg 6377  df-1o 6433  df-oadd 6437  df-omul 6438  df-er 6614  df-ni 8450  df-pli 8451  df-mi 8452  df-lti 8453  df-plpq 8486  df-mpq 8487  df-ltpq 8488  df-enq 8489  df-nq 8490  df-erq 8491  df-plq 8492  df-mq 8493  df-1nq 8494  df-rq 8495  df-ltnq 8496  df-np 8559  df-plp 8561  df-ltp 8563
  Copyright terms: Public domain W3C validator