MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltbtwnnq Unicode version

Theorem ltbtwnnq 8618
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 17-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltbtwnnq  |-  ( A 
<Q  B  <->  E. x ( A 
<Q  x  /\  x  <Q  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem ltbtwnnq
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 8566 . . . . 5  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4753 . . . 4  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
32simprd 449 . . 3  |-  ( A 
<Q  B  ->  B  e. 
Q. )
4 ltexnq 8615 . . . 4  |-  ( B  e.  Q.  ->  ( A  <Q  B  <->  E. y
( A  +Q  y
)  =  B ) )
5 eleq1 2356 . . . . . . . . . 10  |-  ( ( A  +Q  y )  =  B  ->  (
( A  +Q  y
)  e.  Q.  <->  B  e.  Q. ) )
65biimparc 473 . . . . . . . . 9  |-  ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  ( A  +Q  y )  e.  Q. )
7 addnqf 8588 . . . . . . . . . . 11  |-  +Q  :
( Q.  X.  Q. )
--> Q.
87fdmi 5410 . . . . . . . . . 10  |-  dom  +Q  =  ( Q.  X.  Q. )
9 0nnq 8564 . . . . . . . . . 10  |-  -.  (/)  e.  Q.
108, 9ndmovrcl 6022 . . . . . . . . 9  |-  ( ( A  +Q  y )  e.  Q.  ->  ( A  e.  Q.  /\  y  e.  Q. ) )
116, 10syl 15 . . . . . . . 8  |-  ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  ( A  e. 
Q.  /\  y  e.  Q. ) )
1211simprd 449 . . . . . . 7  |-  ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  y  e.  Q. )
13 nsmallnq 8617 . . . . . . . 8  |-  ( y  e.  Q.  ->  E. z 
z  <Q  y )
1411simpld 445 . . . . . . . . . . . 12  |-  ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  A  e.  Q. )
151brel 4753 . . . . . . . . . . . . 13  |-  ( z 
<Q  y  ->  ( z  e.  Q.  /\  y  e.  Q. ) )
1615simpld 445 . . . . . . . . . . . 12  |-  ( z 
<Q  y  ->  z  e. 
Q. )
17 ltaddnq 8614 . . . . . . . . . . . 12  |-  ( ( A  e.  Q.  /\  z  e.  Q. )  ->  A  <Q  ( A  +Q  z ) )
1814, 16, 17syl2an 463 . . . . . . . . . . 11  |-  ( ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  /\  z  <Q  y
)  ->  A  <Q  ( A  +Q  z ) )
19 ltanq 8611 . . . . . . . . . . . . . 14  |-  ( A  e.  Q.  ->  (
z  <Q  y  <->  ( A  +Q  z )  <Q  ( A  +Q  y ) ) )
2019biimpa 470 . . . . . . . . . . . . 13  |-  ( ( A  e.  Q.  /\  z  <Q  y )  -> 
( A  +Q  z
)  <Q  ( A  +Q  y ) )
2114, 20sylan 457 . . . . . . . . . . . 12  |-  ( ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  /\  z  <Q  y
)  ->  ( A  +Q  z )  <Q  ( A  +Q  y ) )
22 simplr 731 . . . . . . . . . . . 12  |-  ( ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  /\  z  <Q  y
)  ->  ( A  +Q  y )  =  B )
2321, 22breqtrd 4063 . . . . . . . . . . 11  |-  ( ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  /\  z  <Q  y
)  ->  ( A  +Q  z )  <Q  B )
24 ovex 5899 . . . . . . . . . . . 12  |-  ( A  +Q  z )  e. 
_V
25 breq2 4043 . . . . . . . . . . . . 13  |-  ( x  =  ( A  +Q  z )  ->  ( A  <Q  x  <->  A  <Q  ( A  +Q  z ) ) )
26 breq1 4042 . . . . . . . . . . . . 13  |-  ( x  =  ( A  +Q  z )  ->  (
x  <Q  B  <->  ( A  +Q  z )  <Q  B ) )
2725, 26anbi12d 691 . . . . . . . . . . . 12  |-  ( x  =  ( A  +Q  z )  ->  (
( A  <Q  x  /\  x  <Q  B )  <-> 
( A  <Q  ( A  +Q  z )  /\  ( A  +Q  z
)  <Q  B ) ) )
2824, 27spcev 2888 . . . . . . . . . . 11  |-  ( ( A  <Q  ( A  +Q  z )  /\  ( A  +Q  z )  <Q  B )  ->  E. x
( A  <Q  x  /\  x  <Q  B ) )
2918, 23, 28syl2anc 642 . . . . . . . . . 10  |-  ( ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  /\  z  <Q  y
)  ->  E. x
( A  <Q  x  /\  x  <Q  B ) )
3029ex 423 . . . . . . . . 9  |-  ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  ( z  <Q 
y  ->  E. x
( A  <Q  x  /\  x  <Q  B ) ) )
3130exlimdv 1626 . . . . . . . 8  |-  ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  ( E. z 
z  <Q  y  ->  E. x
( A  <Q  x  /\  x  <Q  B ) ) )
3213, 31syl5 28 . . . . . . 7  |-  ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  ( y  e. 
Q.  ->  E. x ( A 
<Q  x  /\  x  <Q  B ) ) )
3312, 32mpd 14 . . . . . 6  |-  ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  E. x ( A 
<Q  x  /\  x  <Q  B ) )
3433ex 423 . . . . 5  |-  ( B  e.  Q.  ->  (
( A  +Q  y
)  =  B  ->  E. x ( A  <Q  x  /\  x  <Q  B ) ) )
3534exlimdv 1626 . . . 4  |-  ( B  e.  Q.  ->  ( E. y ( A  +Q  y )  =  B  ->  E. x ( A 
<Q  x  /\  x  <Q  B ) ) )
364, 35sylbid 206 . . 3  |-  ( B  e.  Q.  ->  ( A  <Q  B  ->  E. x
( A  <Q  x  /\  x  <Q  B ) ) )
373, 36mpcom 32 . 2  |-  ( A 
<Q  B  ->  E. x
( A  <Q  x  /\  x  <Q  B ) )
38 ltsonq 8609 . . . 4  |-  <Q  Or  Q.
3938, 1sotri 5086 . . 3  |-  ( ( A  <Q  x  /\  x  <Q  B )  ->  A  <Q  B )
4039exlimiv 1624 . 2  |-  ( E. x ( A  <Q  x  /\  x  <Q  B )  ->  A  <Q  B )
4137, 40impbii 180 1  |-  ( A 
<Q  B  <->  E. x ( A 
<Q  x  /\  x  <Q  B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   class class class wbr 4039    X. cxp 4703  (class class class)co 5874   Q.cnq 8490    +Q cplq 8493    <Q cltq 8496
This theorem is referenced by:  nqpr  8654  reclem2pr  8688
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-omul 6500  df-er 6676  df-ni 8512  df-pli 8513  df-mi 8514  df-lti 8515  df-plpq 8548  df-mpq 8549  df-ltpq 8550  df-enq 8551  df-nq 8552  df-erq 8553  df-plq 8554  df-mq 8555  df-1nq 8556  df-rq 8557  df-ltnq 8558
  Copyright terms: Public domain W3C validator