MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexnq Unicode version

Theorem ltexnq 8595
Description: Ordering on positive fractions in terms of existence of sum. Definition in Proposition 9-2.6 of [Gleason] p. 119. (Contributed by NM, 24-Apr-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltexnq  |-  ( B  e.  Q.  ->  ( A  <Q  B  <->  E. x
( A  +Q  x
)  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem ltexnq
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 8546 . . . 4  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4736 . . 3  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
3 ordpinq 8563 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
4 elpqn 8545 . . . . . . . . 9  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
54adantr 451 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  A  e.  ( N. 
X.  N. ) )
6 xp1st 6111 . . . . . . . 8  |-  ( A  e.  ( N.  X.  N. )  ->  ( 1st `  A )  e.  N. )
75, 6syl 15 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 1st `  A
)  e.  N. )
8 elpqn 8545 . . . . . . . . 9  |-  ( B  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
98adantl 452 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  B  e.  ( N. 
X.  N. ) )
10 xp2nd 6112 . . . . . . . 8  |-  ( B  e.  ( N.  X.  N. )  ->  ( 2nd `  B )  e.  N. )
119, 10syl 15 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 2nd `  B
)  e.  N. )
12 mulclpi 8513 . . . . . . 7  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 1st `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
137, 11, 12syl2anc 642 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( 1st `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
14 xp1st 6111 . . . . . . . 8  |-  ( B  e.  ( N.  X.  N. )  ->  ( 1st `  B )  e.  N. )
159, 14syl 15 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 1st `  B
)  e.  N. )
16 xp2nd 6112 . . . . . . . 8  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
175, 16syl 15 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 2nd `  A
)  e.  N. )
18 mulclpi 8513 . . . . . . 7  |-  ( ( ( 1st `  B
)  e.  N.  /\  ( 2nd `  A )  e.  N. )  -> 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  e. 
N. )
1915, 17, 18syl2anc 642 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  e. 
N. )
20 ltexpi 8522 . . . . . 6  |-  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  e. 
N.  /\  ( ( 1st `  B )  .N  ( 2nd `  A
) )  e.  N. )  ->  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) )  <->  E. y  e.  N.  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  +N  y
)  =  ( ( 1st `  B )  .N  ( 2nd `  A
) ) ) )
2113, 19, 20syl2anc 642 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( ( 1st `  A )  .N  ( 2nd `  B ) ) 
<N  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  E. y  e.  N.  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  +N  y
)  =  ( ( 1st `  B )  .N  ( 2nd `  A
) ) ) )
22 relxp 4793 . . . . . . . . . . . 12  |-  Rel  ( N.  X.  N. )
234ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  A  e.  ( N.  X.  N. )
)
24 1st2nd 6128 . . . . . . . . . . . 12  |-  ( ( Rel  ( N.  X.  N. )  /\  A  e.  ( N.  X.  N. ) )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
2522, 23, 24sylancr 644 . . . . . . . . . . 11  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >. )
2625oveq1d 5835 . . . . . . . . . 10  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( A  +pQ  <.
y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )  =  ( <. ( 1st `  A ) ,  ( 2nd `  A
) >.  +pQ  <. y ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
) )
277adantr 451 . . . . . . . . . . 11  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( 1st `  A
)  e.  N. )
2817adantr 451 . . . . . . . . . . 11  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( 2nd `  A
)  e.  N. )
29 simpr 447 . . . . . . . . . . 11  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  y  e.  N. )
30 mulclpi 8513 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  A
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
3117, 11, 30syl2anc 642 . . . . . . . . . . . 12  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
3231adantr 451 . . . . . . . . . . 11  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( ( 2nd `  A )  .N  ( 2nd `  B ) )  e.  N. )
33 addpipq 8557 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  A
)  e.  N.  /\  ( 2nd `  A )  e.  N. )  /\  ( y  e.  N.  /\  ( ( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. ) )  -> 
( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  +pQ  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>. )  =  <. ( ( ( 1st `  A
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) )  +N  ( y  .N  ( 2nd `  A ) ) ) ,  ( ( 2nd `  A )  .N  ( ( 2nd `  A )  .N  ( 2nd `  B ) ) ) >. )
3427, 28, 29, 32, 33syl22anc 1183 . . . . . . . . . 10  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( <. ( 1st `  A ) ,  ( 2nd `  A
) >.  +pQ  <. y ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
)  =  <. (
( ( 1st `  A
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) )  +N  ( y  .N  ( 2nd `  A ) ) ) ,  ( ( 2nd `  A )  .N  ( ( 2nd `  A )  .N  ( 2nd `  B ) ) ) >. )
3526, 34eqtrd 2316 . . . . . . . . 9  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( A  +pQ  <.
y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )  =  <. ( ( ( 1st `  A )  .N  ( ( 2nd `  A )  .N  ( 2nd `  B ) ) )  +N  ( y  .N  ( 2nd `  A
) ) ) ,  ( ( 2nd `  A
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) ) >.
)
36 oveq2 5828 . . . . . . . . . . . 12  |-  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  y )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  -> 
( ( 2nd `  A
)  .N  ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  y ) )  =  ( ( 2nd `  A
)  .N  ( ( 1st `  B )  .N  ( 2nd `  A
) ) ) )
37 distrpi 8518 . . . . . . . . . . . . 13  |-  ( ( 2nd `  A )  .N  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  +N  y
) )  =  ( ( ( 2nd `  A
)  .N  ( ( 1st `  A )  .N  ( 2nd `  B
) ) )  +N  ( ( 2nd `  A
)  .N  y ) )
38 fvex 5500 . . . . . . . . . . . . . . 15  |-  ( 2nd `  A )  e.  _V
39 fvex 5500 . . . . . . . . . . . . . . 15  |-  ( 1st `  A )  e.  _V
40 fvex 5500 . . . . . . . . . . . . . . 15  |-  ( 2nd `  B )  e.  _V
41 mulcompi 8516 . . . . . . . . . . . . . . 15  |-  ( x  .N  y )  =  ( y  .N  x
)
42 mulasspi 8517 . . . . . . . . . . . . . . 15  |-  ( ( x  .N  y )  .N  z )  =  ( x  .N  (
y  .N  z ) )
4338, 39, 40, 41, 42caov12 6010 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  A )  .N  ( ( 1st `  A )  .N  ( 2nd `  B ) ) )  =  ( ( 1st `  A )  .N  ( ( 2nd `  A )  .N  ( 2nd `  B ) ) )
44 mulcompi 8516 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  A )  .N  y )  =  ( y  .N  ( 2nd `  A ) )
4543, 44oveq12i 5832 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  A
)  .N  ( ( 1st `  A )  .N  ( 2nd `  B
) ) )  +N  ( ( 2nd `  A
)  .N  y ) )  =  ( ( ( 1st `  A
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) )  +N  ( y  .N  ( 2nd `  A ) ) )
4637, 45eqtr2i 2305 . . . . . . . . . . . 12  |-  ( ( ( 1st `  A
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) )  +N  ( y  .N  ( 2nd `  A ) ) )  =  ( ( 2nd `  A )  .N  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  +N  y
) )
47 mulasspi 8517 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) )  =  ( ( 2nd `  A
)  .N  ( ( 2nd `  A )  .N  ( 1st `  B
) ) )
48 mulcompi 8516 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  A )  .N  ( 1st `  B
) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) )
4948oveq2i 5831 . . . . . . . . . . . . 13  |-  ( ( 2nd `  A )  .N  ( ( 2nd `  A )  .N  ( 1st `  B ) ) )  =  ( ( 2nd `  A )  .N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) )
5047, 49eqtri 2304 . . . . . . . . . . . 12  |-  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) )  =  ( ( 2nd `  A
)  .N  ( ( 1st `  B )  .N  ( 2nd `  A
) ) )
5136, 46, 503eqtr4g 2341 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  y )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  -> 
( ( ( 1st `  A )  .N  (
( 2nd `  A
)  .N  ( 2nd `  B ) ) )  +N  ( y  .N  ( 2nd `  A
) ) )  =  ( ( ( 2nd `  A )  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) )
52 mulasspi 8517 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) )  =  ( ( 2nd `  A
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) )
5352eqcomi 2288 . . . . . . . . . . . 12  |-  ( ( 2nd `  A )  .N  ( ( 2nd `  A )  .N  ( 2nd `  B ) ) )  =  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) )
5453a1i 10 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  y )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  -> 
( ( 2nd `  A
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) )  =  ( ( ( 2nd `  A )  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) )
5551, 54opeq12d 3805 . . . . . . . . . 10  |-  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  y )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  ->  <. ( ( ( 1st `  A )  .N  (
( 2nd `  A
)  .N  ( 2nd `  B ) ) )  +N  ( y  .N  ( 2nd `  A
) ) ) ,  ( ( 2nd `  A
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) ) >.  =  <. ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 1st `  B ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 2nd `  B ) )
>. )
5655eqeq2d 2295 . . . . . . . . 9  |-  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  y )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  -> 
( ( A  +pQ  <.
y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )  =  <. ( ( ( 1st `  A )  .N  ( ( 2nd `  A )  .N  ( 2nd `  B ) ) )  +N  ( y  .N  ( 2nd `  A
) ) ) ,  ( ( 2nd `  A
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) ) >.  <->  ( A  +pQ  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>. )  =  <. ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >. )
)
5735, 56syl5ibcom 211 . . . . . . . 8  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  y )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  -> 
( A  +pQ  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>. )  =  <. ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >. )
)
58 fveq2 5486 . . . . . . . . 9  |-  ( ( A  +pQ  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>. )  =  <. ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >.  ->  ( /Q `  ( A  +pQ  <.
y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )
)  =  ( /Q
`  <. ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 1st `  B ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 2nd `  B ) )
>. ) )
59 adderpq 8576 . . . . . . . . . . 11  |-  ( ( /Q `  A )  +Q  ( /Q `  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )
)  =  ( /Q
`  ( A  +pQ  <.
y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )
)
60 nqerid 8553 . . . . . . . . . . . . 13  |-  ( A  e.  Q.  ->  ( /Q `  A )  =  A )
6160ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( /Q `  A )  =  A )
6261oveq1d 5835 . . . . . . . . . . 11  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( ( /Q
`  A )  +Q  ( /Q `  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>. ) )  =  ( A  +Q  ( /Q
`  <. y ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
) ) )
6359, 62syl5eqr 2330 . . . . . . . . . 10  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( /Q `  ( A  +pQ  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>. ) )  =  ( A  +Q  ( /Q
`  <. y ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
) ) )
64 mulclpi 8513 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2nd `  A
)  e.  N.  /\  ( 2nd `  A )  e.  N. )  -> 
( ( 2nd `  A
)  .N  ( 2nd `  A ) )  e. 
N. )
6517, 17, 64syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  e. 
N. )
6665adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( ( 2nd `  A )  .N  ( 2nd `  A ) )  e.  N. )
6715adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( 1st `  B
)  e.  N. )
6811adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( 2nd `  B
)  e.  N. )
69 mulcanenq 8580 . . . . . . . . . . . . . 14  |-  ( ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  e. 
N.  /\  ( 1st `  B )  e.  N.  /\  ( 2nd `  B
)  e.  N. )  -> 
<. ( ( ( 2nd `  A )  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >.  ~Q  <. ( 1st `  B ) ,  ( 2nd `  B
) >. )
7066, 67, 68, 69syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  <. ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 1st `  B ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 2nd `  B ) )
>.  ~Q  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
718ad2antlr 707 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  B  e.  ( N.  X.  N. )
)
72 1st2nd 6128 . . . . . . . . . . . . . 14  |-  ( ( Rel  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  B  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
7322, 71, 72sylancr 644 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  B  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. )
7470, 73breqtrrd 4050 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  <. ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 1st `  B ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 2nd `  B ) )
>.  ~Q  B )
75 mulclpi 8513 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  e. 
N.  /\  ( 1st `  B )  e.  N. )  ->  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 1st `  B ) )  e.  N. )
7666, 67, 75syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 1st `  B ) )  e.  N. )
77 mulclpi 8513 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  e. 
N.  /\  ( 2nd `  B )  e.  N. )  ->  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 2nd `  B ) )  e.  N. )
7866, 68, 77syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 2nd `  B ) )  e.  N. )
79 opelxpi 4720 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( 2nd `  A )  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) )  e.  N.  /\  ( ( ( 2nd `  A )  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) )  e.  N. )  ->  <. ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 1st `  B ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 2nd `  B ) )
>.  e.  ( N.  X.  N. ) )
8076, 78, 79syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  <. ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 1st `  B ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 2nd `  B ) )
>.  e.  ( N.  X.  N. ) )
81 nqereq 8555 . . . . . . . . . . . . 13  |-  ( (
<. ( ( ( 2nd `  A )  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >.  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( <. (
( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >.  ~Q  B  <->  ( /Q `  <. (
( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >. )  =  ( /Q `  B ) ) )
8280, 71, 81syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( <. (
( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >.  ~Q  B  <->  ( /Q `  <. (
( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >. )  =  ( /Q `  B ) ) )
8374, 82mpbid 201 . . . . . . . . . . 11  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( /Q `  <. ( ( ( 2nd `  A )  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >. )  =  ( /Q `  B ) )
84 nqerid 8553 . . . . . . . . . . . 12  |-  ( B  e.  Q.  ->  ( /Q `  B )  =  B )
8584ad2antlr 707 . . . . . . . . . . 11  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( /Q `  B )  =  B )
8683, 85eqtrd 2316 . . . . . . . . . 10  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( /Q `  <. ( ( ( 2nd `  A )  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >. )  =  B )
8763, 86eqeq12d 2298 . . . . . . . . 9  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( ( /Q
`  ( A  +pQ  <.
y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )
)  =  ( /Q
`  <. ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 1st `  B ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 2nd `  B ) )
>. )  <->  ( A  +Q  ( /Q `  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>. ) )  =  B ) )
8858, 87syl5ib 210 . . . . . . . 8  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( ( A 
+pQ  <. y ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
)  =  <. (
( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >.  ->  ( A  +Q  ( /Q `  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )
)  =  B ) )
8957, 88syld 40 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  y )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  -> 
( A  +Q  ( /Q `  <. y ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
) )  =  B ) )
90 fvex 5500 . . . . . . . 8  |-  ( /Q
`  <. y ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
)  e.  _V
91 oveq2 5828 . . . . . . . . 9  |-  ( x  =  ( /Q `  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )  ->  ( A  +Q  x
)  =  ( A  +Q  ( /Q `  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )
) )
9291eqeq1d 2292 . . . . . . . 8  |-  ( x  =  ( /Q `  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )  ->  ( ( A  +Q  x )  =  B  <-> 
( A  +Q  ( /Q `  <. y ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
) )  =  B ) )
9390, 92spcev 2876 . . . . . . 7  |-  ( ( A  +Q  ( /Q
`  <. y ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
) )  =  B  ->  E. x ( A  +Q  x )  =  B )
9489, 93syl6 29 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  y )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  ->  E. x ( A  +Q  x )  =  B ) )
9594rexlimdva 2668 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( E. y  e. 
N.  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  +N  y
)  =  ( ( 1st `  B )  .N  ( 2nd `  A
) )  ->  E. x
( A  +Q  x
)  =  B ) )
9621, 95sylbid 206 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( ( 1st `  A )  .N  ( 2nd `  B ) ) 
<N  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  ->  E. x ( A  +Q  x )  =  B ) )
973, 96sylbid 206 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  ->  E. x ( A  +Q  x )  =  B ) )
982, 97mpcom 32 . 2  |-  ( A 
<Q  B  ->  E. x
( A  +Q  x
)  =  B )
99 eleq1 2344 . . . . . . 7  |-  ( ( A  +Q  x )  =  B  ->  (
( A  +Q  x
)  e.  Q.  <->  B  e.  Q. ) )
10099biimparc 473 . . . . . 6  |-  ( ( B  e.  Q.  /\  ( A  +Q  x
)  =  B )  ->  ( A  +Q  x )  e.  Q. )
101 addnqf 8568 . . . . . . . 8  |-  +Q  :
( Q.  X.  Q. )
--> Q.
102101fdmi 5360 . . . . . . 7  |-  dom  +Q  =  ( Q.  X.  Q. )
103 0nnq 8544 . . . . . . 7  |-  -.  (/)  e.  Q.
104102, 103ndmovrcl 5968 . . . . . 6  |-  ( ( A  +Q  x )  e.  Q.  ->  ( A  e.  Q.  /\  x  e.  Q. ) )
105 ltaddnq 8594 . . . . . 6  |-  ( ( A  e.  Q.  /\  x  e.  Q. )  ->  A  <Q  ( A  +Q  x ) )
106100, 104, 1053syl 18 . . . . 5  |-  ( ( B  e.  Q.  /\  ( A  +Q  x
)  =  B )  ->  A  <Q  ( A  +Q  x ) )
107 simpr 447 . . . . 5  |-  ( ( B  e.  Q.  /\  ( A  +Q  x
)  =  B )  ->  ( A  +Q  x )  =  B )
108106, 107breqtrd 4048 . . . 4  |-  ( ( B  e.  Q.  /\  ( A  +Q  x
)  =  B )  ->  A  <Q  B )
109108ex 423 . . 3  |-  ( B  e.  Q.  ->  (
( A  +Q  x
)  =  B  ->  A  <Q  B ) )
110109exlimdv 1665 . 2  |-  ( B  e.  Q.  ->  ( E. x ( A  +Q  x )  =  B  ->  A  <Q  B ) )
11198, 110impbid2 195 1  |-  ( B  e.  Q.  ->  ( A  <Q  B  <->  E. x
( A  +Q  x
)  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1685   E.wrex 2545   <.cop 3644   class class class wbr 4024    X. cxp 4686   Rel wrel 4693   ` cfv 5221  (class class class)co 5820   1stc1st 6082   2ndc2nd 6083   N.cnpi 8462    +N cpli 8463    .N cmi 8464    <N clti 8465    +pQ cplpq 8466    ~Q ceq 8469   Q.cnq 8470   /Qcerq 8472    +Q cplq 8473    <Q cltq 8476
This theorem is referenced by:  ltbtwnnq  8598  prnmadd  8617  ltexprlem4  8659  ltexprlem7  8662  prlem936  8667
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-omul 6480  df-er 6656  df-ni 8492  df-pli 8493  df-mi 8494  df-lti 8495  df-plpq 8528  df-mpq 8529  df-ltpq 8530  df-enq 8531  df-nq 8532  df-erq 8533  df-plq 8534  df-mq 8535  df-1nq 8536  df-ltnq 8538
  Copyright terms: Public domain W3C validator