MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexnq Unicode version

Theorem ltexnq 8532
Description: Ordering on positive fractions in terms of existence of sum. Definition in Proposition 9-2.6 of [Gleason] p. 119. (Contributed by NM, 24-Apr-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltexnq  |-  ( B  e.  Q.  ->  ( A  <Q  B  <->  E. x
( A  +Q  x
)  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem ltexnq
StepHypRef Expression
1 ltrelnq 8483 . . . 4  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4690 . . 3  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
3 ordpinq 8500 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
4 elpqn 8482 . . . . . . . . 9  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
54adantr 453 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  A  e.  ( N. 
X.  N. ) )
6 xp1st 6048 . . . . . . . 8  |-  ( A  e.  ( N.  X.  N. )  ->  ( 1st `  A )  e.  N. )
75, 6syl 17 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 1st `  A
)  e.  N. )
8 elpqn 8482 . . . . . . . . 9  |-  ( B  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
98adantl 454 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  B  e.  ( N. 
X.  N. ) )
10 xp2nd 6049 . . . . . . . 8  |-  ( B  e.  ( N.  X.  N. )  ->  ( 2nd `  B )  e.  N. )
119, 10syl 17 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 2nd `  B
)  e.  N. )
12 mulclpi 8450 . . . . . . 7  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 1st `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
137, 11, 12syl2anc 645 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( 1st `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
14 xp1st 6048 . . . . . . . 8  |-  ( B  e.  ( N.  X.  N. )  ->  ( 1st `  B )  e.  N. )
159, 14syl 17 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 1st `  B
)  e.  N. )
16 xp2nd 6049 . . . . . . . 8  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
175, 16syl 17 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 2nd `  A
)  e.  N. )
18 mulclpi 8450 . . . . . . 7  |-  ( ( ( 1st `  B
)  e.  N.  /\  ( 2nd `  A )  e.  N. )  -> 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  e. 
N. )
1915, 17, 18syl2anc 645 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  e. 
N. )
20 ltexpi 8459 . . . . . 6  |-  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  e. 
N.  /\  ( ( 1st `  B )  .N  ( 2nd `  A
) )  e.  N. )  ->  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) )  <->  E. y  e.  N.  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  +N  y
)  =  ( ( 1st `  B )  .N  ( 2nd `  A
) ) ) )
2113, 19, 20syl2anc 645 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( ( 1st `  A )  .N  ( 2nd `  B ) ) 
<N  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  E. y  e.  N.  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  +N  y
)  =  ( ( 1st `  B )  .N  ( 2nd `  A
) ) ) )
22 relxp 4747 . . . . . . . . . . . 12  |-  Rel  ( N.  X.  N. )
234ad2antrr 709 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  A  e.  ( N.  X.  N. )
)
24 1st2nd 6065 . . . . . . . . . . . 12  |-  ( ( Rel  ( N.  X.  N. )  /\  A  e.  ( N.  X.  N. ) )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
2522, 23, 24sylancr 647 . . . . . . . . . . 11  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >. )
2625oveq1d 5772 . . . . . . . . . 10  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( A  +pQ  <.
y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )  =  ( <. ( 1st `  A ) ,  ( 2nd `  A
) >.  +pQ  <. y ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
) )
277adantr 453 . . . . . . . . . . 11  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( 1st `  A
)  e.  N. )
2817adantr 453 . . . . . . . . . . 11  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( 2nd `  A
)  e.  N. )
29 simpr 449 . . . . . . . . . . 11  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  y  e.  N. )
30 mulclpi 8450 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  A
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
3117, 11, 30syl2anc 645 . . . . . . . . . . . 12  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
3231adantr 453 . . . . . . . . . . 11  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( ( 2nd `  A )  .N  ( 2nd `  B ) )  e.  N. )
33 addpipq 8494 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  A
)  e.  N.  /\  ( 2nd `  A )  e.  N. )  /\  ( y  e.  N.  /\  ( ( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. ) )  -> 
( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  +pQ  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>. )  =  <. ( ( ( 1st `  A
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) )  +N  ( y  .N  ( 2nd `  A ) ) ) ,  ( ( 2nd `  A )  .N  ( ( 2nd `  A )  .N  ( 2nd `  B ) ) ) >. )
3427, 28, 29, 32, 33syl22anc 1188 . . . . . . . . . 10  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( <. ( 1st `  A ) ,  ( 2nd `  A
) >.  +pQ  <. y ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
)  =  <. (
( ( 1st `  A
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) )  +N  ( y  .N  ( 2nd `  A ) ) ) ,  ( ( 2nd `  A )  .N  ( ( 2nd `  A )  .N  ( 2nd `  B ) ) ) >. )
3526, 34eqtrd 2288 . . . . . . . . 9  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( A  +pQ  <.
y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )  =  <. ( ( ( 1st `  A )  .N  ( ( 2nd `  A )  .N  ( 2nd `  B ) ) )  +N  ( y  .N  ( 2nd `  A
) ) ) ,  ( ( 2nd `  A
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) ) >.
)
36 oveq2 5765 . . . . . . . . . . . 12  |-  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  y )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  -> 
( ( 2nd `  A
)  .N  ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  y ) )  =  ( ( 2nd `  A
)  .N  ( ( 1st `  B )  .N  ( 2nd `  A
) ) ) )
37 distrpi 8455 . . . . . . . . . . . . 13  |-  ( ( 2nd `  A )  .N  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  +N  y
) )  =  ( ( ( 2nd `  A
)  .N  ( ( 1st `  A )  .N  ( 2nd `  B
) ) )  +N  ( ( 2nd `  A
)  .N  y ) )
38 fvex 5437 . . . . . . . . . . . . . . 15  |-  ( 2nd `  A )  e.  _V
39 fvex 5437 . . . . . . . . . . . . . . 15  |-  ( 1st `  A )  e.  _V
40 fvex 5437 . . . . . . . . . . . . . . 15  |-  ( 2nd `  B )  e.  _V
41 mulcompi 8453 . . . . . . . . . . . . . . 15  |-  ( x  .N  y )  =  ( y  .N  x
)
42 mulasspi 8454 . . . . . . . . . . . . . . 15  |-  ( ( x  .N  y )  .N  z )  =  ( x  .N  (
y  .N  z ) )
4338, 39, 40, 41, 42caov12 5947 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  A )  .N  ( ( 1st `  A )  .N  ( 2nd `  B ) ) )  =  ( ( 1st `  A )  .N  ( ( 2nd `  A )  .N  ( 2nd `  B ) ) )
44 mulcompi 8453 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  A )  .N  y )  =  ( y  .N  ( 2nd `  A ) )
4543, 44oveq12i 5769 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  A
)  .N  ( ( 1st `  A )  .N  ( 2nd `  B
) ) )  +N  ( ( 2nd `  A
)  .N  y ) )  =  ( ( ( 1st `  A
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) )  +N  ( y  .N  ( 2nd `  A ) ) )
4637, 45eqtr2i 2277 . . . . . . . . . . . 12  |-  ( ( ( 1st `  A
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) )  +N  ( y  .N  ( 2nd `  A ) ) )  =  ( ( 2nd `  A )  .N  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  +N  y
) )
47 mulasspi 8454 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) )  =  ( ( 2nd `  A
)  .N  ( ( 2nd `  A )  .N  ( 1st `  B
) ) )
48 mulcompi 8453 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  A )  .N  ( 1st `  B
) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) )
4948oveq2i 5768 . . . . . . . . . . . . 13  |-  ( ( 2nd `  A )  .N  ( ( 2nd `  A )  .N  ( 1st `  B ) ) )  =  ( ( 2nd `  A )  .N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) )
5047, 49eqtri 2276 . . . . . . . . . . . 12  |-  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) )  =  ( ( 2nd `  A
)  .N  ( ( 1st `  B )  .N  ( 2nd `  A
) ) )
5136, 46, 503eqtr4g 2313 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  y )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  -> 
( ( ( 1st `  A )  .N  (
( 2nd `  A
)  .N  ( 2nd `  B ) ) )  +N  ( y  .N  ( 2nd `  A
) ) )  =  ( ( ( 2nd `  A )  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) )
52 mulasspi 8454 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) )  =  ( ( 2nd `  A
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) )
5352eqcomi 2260 . . . . . . . . . . . 12  |-  ( ( 2nd `  A )  .N  ( ( 2nd `  A )  .N  ( 2nd `  B ) ) )  =  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) )
5453a1i 12 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  y )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  -> 
( ( 2nd `  A
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) )  =  ( ( ( 2nd `  A )  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) )
5551, 54opeq12d 3745 . . . . . . . . . 10  |-  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  y )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  ->  <. ( ( ( 1st `  A )  .N  (
( 2nd `  A
)  .N  ( 2nd `  B ) ) )  +N  ( y  .N  ( 2nd `  A
) ) ) ,  ( ( 2nd `  A
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) ) >.  =  <. ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 1st `  B ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 2nd `  B ) )
>. )
5655eqeq2d 2267 . . . . . . . . 9  |-  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  y )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  -> 
( ( A  +pQ  <.
y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )  =  <. ( ( ( 1st `  A )  .N  ( ( 2nd `  A )  .N  ( 2nd `  B ) ) )  +N  ( y  .N  ( 2nd `  A
) ) ) ,  ( ( 2nd `  A
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) ) >.  <->  ( A  +pQ  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>. )  =  <. ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >. )
)
5735, 56syl5ibcom 213 . . . . . . . 8  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  y )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  -> 
( A  +pQ  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>. )  =  <. ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >. )
)
58 fveq2 5423 . . . . . . . . 9  |-  ( ( A  +pQ  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>. )  =  <. ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >.  ->  ( /Q `  ( A  +pQ  <.
y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )
)  =  ( /Q
`  <. ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 1st `  B ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 2nd `  B ) )
>. ) )
59 adderpq 8513 . . . . . . . . . . 11  |-  ( ( /Q `  A )  +Q  ( /Q `  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )
)  =  ( /Q
`  ( A  +pQ  <.
y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )
)
60 nqerid 8490 . . . . . . . . . . . . 13  |-  ( A  e.  Q.  ->  ( /Q `  A )  =  A )
6160ad2antrr 709 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( /Q `  A )  =  A )
6261oveq1d 5772 . . . . . . . . . . 11  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( ( /Q
`  A )  +Q  ( /Q `  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>. ) )  =  ( A  +Q  ( /Q
`  <. y ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
) ) )
6359, 62syl5eqr 2302 . . . . . . . . . 10  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( /Q `  ( A  +pQ  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>. ) )  =  ( A  +Q  ( /Q
`  <. y ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
) ) )
64 mulclpi 8450 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2nd `  A
)  e.  N.  /\  ( 2nd `  A )  e.  N. )  -> 
( ( 2nd `  A
)  .N  ( 2nd `  A ) )  e. 
N. )
6517, 17, 64syl2anc 645 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  e. 
N. )
6665adantr 453 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( ( 2nd `  A )  .N  ( 2nd `  A ) )  e.  N. )
6715adantr 453 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( 1st `  B
)  e.  N. )
6811adantr 453 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( 2nd `  B
)  e.  N. )
69 mulcanenq 8517 . . . . . . . . . . . . . 14  |-  ( ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  e. 
N.  /\  ( 1st `  B )  e.  N.  /\  ( 2nd `  B
)  e.  N. )  -> 
<. ( ( ( 2nd `  A )  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >.  ~Q  <. ( 1st `  B ) ,  ( 2nd `  B
) >. )
7066, 67, 68, 69syl3anc 1187 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  <. ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 1st `  B ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 2nd `  B ) )
>.  ~Q  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
718ad2antlr 710 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  B  e.  ( N.  X.  N. )
)
72 1st2nd 6065 . . . . . . . . . . . . . 14  |-  ( ( Rel  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  B  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
7322, 71, 72sylancr 647 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  B  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. )
7470, 73breqtrrd 3989 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  <. ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 1st `  B ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 2nd `  B ) )
>.  ~Q  B )
75 mulclpi 8450 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  e. 
N.  /\  ( 1st `  B )  e.  N. )  ->  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 1st `  B ) )  e.  N. )
7666, 67, 75syl2anc 645 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 1st `  B ) )  e.  N. )
77 mulclpi 8450 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  e. 
N.  /\  ( 2nd `  B )  e.  N. )  ->  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 2nd `  B ) )  e.  N. )
7866, 68, 77syl2anc 645 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 2nd `  B ) )  e.  N. )
79 opelxpi 4674 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( 2nd `  A )  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) )  e.  N.  /\  ( ( ( 2nd `  A )  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) )  e.  N. )  ->  <. ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 1st `  B ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 2nd `  B ) )
>.  e.  ( N.  X.  N. ) )
8076, 78, 79syl2anc 645 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  <. ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 1st `  B ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 2nd `  B ) )
>.  e.  ( N.  X.  N. ) )
81 nqereq 8492 . . . . . . . . . . . . 13  |-  ( (
<. ( ( ( 2nd `  A )  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >.  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( <. (
( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >.  ~Q  B  <->  ( /Q `  <. (
( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >. )  =  ( /Q `  B ) ) )
8280, 71, 81syl2anc 645 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( <. (
( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >.  ~Q  B  <->  ( /Q `  <. (
( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >. )  =  ( /Q `  B ) ) )
8374, 82mpbid 203 . . . . . . . . . . 11  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( /Q `  <. ( ( ( 2nd `  A )  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >. )  =  ( /Q `  B ) )
84 nqerid 8490 . . . . . . . . . . . 12  |-  ( B  e.  Q.  ->  ( /Q `  B )  =  B )
8584ad2antlr 710 . . . . . . . . . . 11  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( /Q `  B )  =  B )
8683, 85eqtrd 2288 . . . . . . . . . 10  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( /Q `  <. ( ( ( 2nd `  A )  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >. )  =  B )
8763, 86eqeq12d 2270 . . . . . . . . 9  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( ( /Q
`  ( A  +pQ  <.
y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )
)  =  ( /Q
`  <. ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 1st `  B ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  A
) )  .N  ( 2nd `  B ) )
>. )  <->  ( A  +Q  ( /Q `  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>. ) )  =  B ) )
8858, 87syl5ib 212 . . . . . . . 8  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( ( A 
+pQ  <. y ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
)  =  <. (
( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 1st `  B
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  B
) ) >.  ->  ( A  +Q  ( /Q `  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )
)  =  B ) )
8957, 88syld 42 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  y )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  -> 
( A  +Q  ( /Q `  <. y ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
) )  =  B ) )
90 fvex 5437 . . . . . . . 8  |-  ( /Q
`  <. y ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
)  e.  _V
91 oveq2 5765 . . . . . . . . 9  |-  ( x  =  ( /Q `  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )  ->  ( A  +Q  x
)  =  ( A  +Q  ( /Q `  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )
) )
9291eqeq1d 2264 . . . . . . . 8  |-  ( x  =  ( /Q `  <. y ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )  ->  ( ( A  +Q  x )  =  B  <-> 
( A  +Q  ( /Q `  <. y ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
) )  =  B ) )
9390, 92cla4ev 2826 . . . . . . 7  |-  ( ( A  +Q  ( /Q
`  <. y ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
) )  =  B  ->  E. x ( A  +Q  x )  =  B )
9489, 93syl6 31 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  y  e.  N. )  ->  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  y )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  ->  E. x ( A  +Q  x )  =  B ) )
9594rexlimdva 2638 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( E. y  e. 
N.  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  +N  y
)  =  ( ( 1st `  B )  .N  ( 2nd `  A
) )  ->  E. x
( A  +Q  x
)  =  B ) )
9621, 95sylbid 208 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( ( 1st `  A )  .N  ( 2nd `  B ) ) 
<N  ( ( 1st `  B
)  .N  ( 2nd `  A ) )  ->  E. x ( A  +Q  x )  =  B ) )
973, 96sylbid 208 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  ->  E. x ( A  +Q  x )  =  B ) )
982, 97mpcom 34 . 2  |-  ( A 
<Q  B  ->  E. x
( A  +Q  x
)  =  B )
99 eleq1 2316 . . . . . . 7  |-  ( ( A  +Q  x )  =  B  ->  (
( A  +Q  x
)  e.  Q.  <->  B  e.  Q. ) )
10099biimparc 475 . . . . . 6  |-  ( ( B  e.  Q.  /\  ( A  +Q  x
)  =  B )  ->  ( A  +Q  x )  e.  Q. )
101 addnqf 8505 . . . . . . . 8  |-  +Q  :
( Q.  X.  Q. )
--> Q.
102101fdmi 5297 . . . . . . 7  |-  dom  +Q  =  ( Q.  X.  Q. )
103 0nnq 8481 . . . . . . 7  |-  -.  (/)  e.  Q.
104102, 103ndmovrcl 5905 . . . . . 6  |-  ( ( A  +Q  x )  e.  Q.  ->  ( A  e.  Q.  /\  x  e.  Q. ) )
105 ltaddnq 8531 . . . . . 6  |-  ( ( A  e.  Q.  /\  x  e.  Q. )  ->  A  <Q  ( A  +Q  x ) )
106100, 104, 1053syl 20 . . . . 5  |-  ( ( B  e.  Q.  /\  ( A  +Q  x
)  =  B )  ->  A  <Q  ( A  +Q  x ) )
107 simpr 449 . . . . 5  |-  ( ( B  e.  Q.  /\  ( A  +Q  x
)  =  B )  ->  ( A  +Q  x )  =  B )
108106, 107breqtrd 3987 . . . 4  |-  ( ( B  e.  Q.  /\  ( A  +Q  x
)  =  B )  ->  A  <Q  B )
109108ex 425 . . 3  |-  ( B  e.  Q.  ->  (
( A  +Q  x
)  =  B  ->  A  <Q  B ) )
110109exlimdv 1933 . 2  |-  ( B  e.  Q.  ->  ( E. x ( A  +Q  x )  =  B  ->  A  <Q  B ) )
11198, 110impbid2 197 1  |-  ( B  e.  Q.  ->  ( A  <Q  B  <->  E. x
( A  +Q  x
)  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621   E.wrex 2517   <.cop 3584   class class class wbr 3963    X. cxp 4624   Rel wrel 4631   ` cfv 4638  (class class class)co 5757   1stc1st 6019   2ndc2nd 6020   N.cnpi 8399    +N cpli 8400    .N cmi 8401    <N clti 8402    +pQ cplpq 8403    ~Q ceq 8406   Q.cnq 8407   /Qcerq 8409    +Q cplq 8410    <Q cltq 8413
This theorem is referenced by:  ltbtwnnq  8535  prnmadd  8554  ltexprlem4  8596  ltexprlem7  8599  prlem936  8604
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-recs 6321  df-rdg 6356  df-1o 6412  df-oadd 6416  df-omul 6417  df-er 6593  df-ni 8429  df-pli 8430  df-mi 8431  df-lti 8432  df-plpq 8465  df-mpq 8466  df-ltpq 8467  df-enq 8468  df-nq 8469  df-erq 8470  df-plq 8471  df-mq 8472  df-1nq 8473  df-ltnq 8475
  Copyright terms: Public domain W3C validator