MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexpri Structured version   Unicode version

Theorem ltexpri 8920
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltexpri  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem ltexpri
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 8875 . . 3  |-  <P  C_  ( P.  X.  P. )
21brel 4926 . 2  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
3 ltprord 8907 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  A  C.  B ) )
4 oveq2 6089 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
w  +Q  y )  =  ( w  +Q  z ) )
54eleq1d 2502 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( w  +Q  y
)  e.  B  <->  ( w  +Q  z )  e.  B
) )
65anbi2d 685 . . . . . . . . 9  |-  ( y  =  z  ->  (
( -.  w  e.  A  /\  ( w  +Q  y )  e.  B )  <->  ( -.  w  e.  A  /\  ( w  +Q  z
)  e.  B ) ) )
76exbidv 1636 . . . . . . . 8  |-  ( y  =  z  ->  ( E. w ( -.  w  e.  A  /\  (
w  +Q  y )  e.  B )  <->  E. w
( -.  w  e.  A  /\  ( w  +Q  z )  e.  B ) ) )
87cbvabv 2555 . . . . . . 7  |-  { y  |  E. w ( -.  w  e.  A  /\  ( w  +Q  y
)  e.  B ) }  =  { z  |  E. w ( -.  w  e.  A  /\  ( w  +Q  z
)  e.  B ) }
98ltexprlem5 8917 . . . . . 6  |-  ( ( B  e.  P.  /\  A  C.  B )  ->  { y  |  E. w ( -.  w  e.  A  /\  (
w  +Q  y )  e.  B ) }  e.  P. )
109adantll 695 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  { y  |  E. w ( -.  w  e.  A  /\  ( w  +Q  y
)  e.  B ) }  e.  P. )
118ltexprlem6 8918 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  ( A  +P.  { y  |  E. w
( -.  w  e.  A  /\  ( w  +Q  y )  e.  B ) } ) 
C_  B )
128ltexprlem7 8919 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  B  C_  ( A  +P.  { y  |  E. w ( -.  w  e.  A  /\  ( w  +Q  y
)  e.  B ) } ) )
1311, 12eqssd 3365 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  ( A  +P.  { y  |  E. w
( -.  w  e.  A  /\  ( w  +Q  y )  e.  B ) } )  =  B )
14 oveq2 6089 . . . . . . 7  |-  ( x  =  { y  |  E. w ( -.  w  e.  A  /\  ( w  +Q  y
)  e.  B ) }  ->  ( A  +P.  x )  =  ( A  +P.  { y  |  E. w ( -.  w  e.  A  /\  ( w  +Q  y
)  e.  B ) } ) )
1514eqeq1d 2444 . . . . . 6  |-  ( x  =  { y  |  E. w ( -.  w  e.  A  /\  ( w  +Q  y
)  e.  B ) }  ->  ( ( A  +P.  x )  =  B  <->  ( A  +P.  { y  |  E. w
( -.  w  e.  A  /\  ( w  +Q  y )  e.  B ) } )  =  B ) )
1615rspcev 3052 . . . . 5  |-  ( ( { y  |  E. w ( -.  w  e.  A  /\  (
w  +Q  y )  e.  B ) }  e.  P.  /\  ( A  +P.  { y  |  E. w ( -.  w  e.  A  /\  ( w  +Q  y
)  e.  B ) } )  =  B )  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
1710, 13, 16syl2anc 643 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
1817ex 424 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  C.  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B ) )
193, 18sylbid 207 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B ) )
202, 19mpcom 34 1  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   {cab 2422   E.wrex 2706    C. wpss 3321   class class class wbr 4212  (class class class)co 6081    +Q cplq 8730   P.cnp 8734    +P. cpp 8736    <P cltp 8738
This theorem is referenced by:  ltaprlem  8921  recexsrlem  8978  mulgt0sr  8980  map2psrpr  8985
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-omul 6729  df-er 6905  df-ni 8749  df-pli 8750  df-mi 8751  df-lti 8752  df-plpq 8785  df-mpq 8786  df-ltpq 8787  df-enq 8788  df-nq 8789  df-erq 8790  df-plq 8791  df-mq 8792  df-1nq 8793  df-rq 8794  df-ltnq 8795  df-np 8858  df-plp 8860  df-ltp 8862
  Copyright terms: Public domain W3C validator