MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexpri Unicode version

Theorem ltexpri 8662
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltexpri  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
Distinct variable groups:    x, A    x, B
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.

Proof of Theorem ltexpri
StepHypRef Expression
1 ltrelpr 8617 . . 3  |-  <P  C_  ( P.  X.  P. )
21brel 4736 . 2  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
3 ltprord 8649 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  A  C.  B ) )
4 oveq2 5827 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
w  +Q  y )  =  ( w  +Q  z ) )
54eleq1d 2350 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( w  +Q  y
)  e.  B  <->  ( w  +Q  z )  e.  B
) )
65anbi2d 686 . . . . . . . . 9  |-  ( y  =  z  ->  (
( -.  w  e.  A  /\  ( w  +Q  y )  e.  B )  <->  ( -.  w  e.  A  /\  ( w  +Q  z
)  e.  B ) ) )
76exbidv 1613 . . . . . . . 8  |-  ( y  =  z  ->  ( E. w ( -.  w  e.  A  /\  (
w  +Q  y )  e.  B )  <->  E. w
( -.  w  e.  A  /\  ( w  +Q  z )  e.  B ) ) )
87cbvabv 2403 . . . . . . 7  |-  { y  |  E. w ( -.  w  e.  A  /\  ( w  +Q  y
)  e.  B ) }  =  { z  |  E. w ( -.  w  e.  A  /\  ( w  +Q  z
)  e.  B ) }
98ltexprlem5 8659 . . . . . 6  |-  ( ( B  e.  P.  /\  A  C.  B )  ->  { y  |  E. w ( -.  w  e.  A  /\  (
w  +Q  y )  e.  B ) }  e.  P. )
109adantll 696 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  { y  |  E. w ( -.  w  e.  A  /\  ( w  +Q  y
)  e.  B ) }  e.  P. )
118ltexprlem6 8660 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  ( A  +P.  { y  |  E. w
( -.  w  e.  A  /\  ( w  +Q  y )  e.  B ) } ) 
C_  B )
128ltexprlem7 8661 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  B  C_  ( A  +P.  { y  |  E. w ( -.  w  e.  A  /\  ( w  +Q  y
)  e.  B ) } ) )
1311, 12eqssd 3197 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  ( A  +P.  { y  |  E. w
( -.  w  e.  A  /\  ( w  +Q  y )  e.  B ) } )  =  B )
14 oveq2 5827 . . . . . . 7  |-  ( x  =  { y  |  E. w ( -.  w  e.  A  /\  ( w  +Q  y
)  e.  B ) }  ->  ( A  +P.  x )  =  ( A  +P.  { y  |  E. w ( -.  w  e.  A  /\  ( w  +Q  y
)  e.  B ) } ) )
1514eqeq1d 2292 . . . . . 6  |-  ( x  =  { y  |  E. w ( -.  w  e.  A  /\  ( w  +Q  y
)  e.  B ) }  ->  ( ( A  +P.  x )  =  B  <->  ( A  +P.  { y  |  E. w
( -.  w  e.  A  /\  ( w  +Q  y )  e.  B ) } )  =  B ) )
1615rspcev 2885 . . . . 5  |-  ( ( { y  |  E. w ( -.  w  e.  A  /\  (
w  +Q  y )  e.  B ) }  e.  P.  /\  ( A  +P.  { y  |  E. w ( -.  w  e.  A  /\  ( w  +Q  y
)  e.  B ) } )  =  B )  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
1710, 13, 16syl2anc 644 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
1817ex 425 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  C.  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B ) )
193, 18sylbid 208 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B ) )
202, 19mpcom 34 1  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360   E.wex 1529    = wceq 1624    e. wcel 1685   {cab 2270   E.wrex 2545    C. wpss 3154   class class class wbr 4024  (class class class)co 5819    +Q cplq 8472   P.cnp 8476    +P. cpp 8478    <P cltp 8480
This theorem is referenced by:  ltaprlem  8663  recexsrlem  8720  mulgt0sr  8722  map2psrpr  8727
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-recs 6383  df-rdg 6418  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6655  df-ni 8491  df-pli 8492  df-mi 8493  df-lti 8494  df-plpq 8527  df-mpq 8528  df-ltpq 8529  df-enq 8530  df-nq 8531  df-erq 8532  df-plq 8533  df-mq 8534  df-1nq 8535  df-rq 8536  df-ltnq 8537  df-np 8600  df-plp 8602  df-ltp 8604
  Copyright terms: Public domain W3C validator