MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexpri Unicode version

Theorem ltexpri 8635
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltexpri  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem ltexpri
StepHypRef Expression
1 ltrelpr 8590 . . 3  |-  <P  C_  ( P.  X.  P. )
21brel 4725 . 2  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
3 ltprord 8622 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  A  C.  B ) )
4 oveq2 5800 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
w  +Q  y )  =  ( w  +Q  z ) )
54eleq1d 2324 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( w  +Q  y
)  e.  B  <->  ( w  +Q  z )  e.  B
) )
65anbi2d 687 . . . . . . . . 9  |-  ( y  =  z  ->  (
( -.  w  e.  A  /\  ( w  +Q  y )  e.  B )  <->  ( -.  w  e.  A  /\  ( w  +Q  z
)  e.  B ) ) )
76exbidv 2006 . . . . . . . 8  |-  ( y  =  z  ->  ( E. w ( -.  w  e.  A  /\  (
w  +Q  y )  e.  B )  <->  E. w
( -.  w  e.  A  /\  ( w  +Q  z )  e.  B ) ) )
87cbvabv 2377 . . . . . . 7  |-  { y  |  E. w ( -.  w  e.  A  /\  ( w  +Q  y
)  e.  B ) }  =  { z  |  E. w ( -.  w  e.  A  /\  ( w  +Q  z
)  e.  B ) }
98ltexprlem5 8632 . . . . . 6  |-  ( ( B  e.  P.  /\  A  C.  B )  ->  { y  |  E. w ( -.  w  e.  A  /\  (
w  +Q  y )  e.  B ) }  e.  P. )
109adantll 697 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  { y  |  E. w ( -.  w  e.  A  /\  ( w  +Q  y
)  e.  B ) }  e.  P. )
118ltexprlem6 8633 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  ( A  +P.  { y  |  E. w
( -.  w  e.  A  /\  ( w  +Q  y )  e.  B ) } ) 
C_  B )
128ltexprlem7 8634 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  B  C_  ( A  +P.  { y  |  E. w ( -.  w  e.  A  /\  ( w  +Q  y
)  e.  B ) } ) )
1311, 12eqssd 3171 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  ( A  +P.  { y  |  E. w
( -.  w  e.  A  /\  ( w  +Q  y )  e.  B ) } )  =  B )
14 oveq2 5800 . . . . . . 7  |-  ( x  =  { y  |  E. w ( -.  w  e.  A  /\  ( w  +Q  y
)  e.  B ) }  ->  ( A  +P.  x )  =  ( A  +P.  { y  |  E. w ( -.  w  e.  A  /\  ( w  +Q  y
)  e.  B ) } ) )
1514eqeq1d 2266 . . . . . 6  |-  ( x  =  { y  |  E. w ( -.  w  e.  A  /\  ( w  +Q  y
)  e.  B ) }  ->  ( ( A  +P.  x )  =  B  <->  ( A  +P.  { y  |  E. w
( -.  w  e.  A  /\  ( w  +Q  y )  e.  B ) } )  =  B ) )
1615rcla4ev 2859 . . . . 5  |-  ( ( { y  |  E. w ( -.  w  e.  A  /\  (
w  +Q  y )  e.  B ) }  e.  P.  /\  ( A  +P.  { y  |  E. w ( -.  w  e.  A  /\  ( w  +Q  y
)  e.  B ) } )  =  B )  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
1710, 13, 16syl2anc 645 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
1817ex 425 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  C.  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B ) )
193, 18sylbid 208 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B ) )
202, 19mpcom 34 1  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621   {cab 2244   E.wrex 2519    C. wpss 3128   class class class wbr 3997  (class class class)co 5792    +Q cplq 8445   P.cnp 8449    +P. cpp 8451    <P cltp 8453
This theorem is referenced by:  ltaprlem  8636  recexsrlem  8693  mulgt0sr  8695  map2psrpr  8700
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-recs 6356  df-rdg 6391  df-1o 6447  df-oadd 6451  df-omul 6452  df-er 6628  df-ni 8464  df-pli 8465  df-mi 8466  df-lti 8467  df-plpq 8500  df-mpq 8501  df-ltpq 8502  df-enq 8503  df-nq 8504  df-erq 8505  df-plq 8506  df-mq 8507  df-1nq 8508  df-rq 8509  df-ltnq 8510  df-np 8573  df-plp 8575  df-ltp 8577
  Copyright terms: Public domain W3C validator