MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem1 Unicode version

Theorem ltexprlem1 8655
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 3-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
Assertion
Ref Expression
ltexprlem1  |-  ( B  e.  P.  ->  ( A  C.  B  ->  C  =/=  (/) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C
Allowed substitution hint:    C( y)

Proof of Theorem ltexprlem1
StepHypRef Expression
1 pssnel 3520 . . 3  |-  ( A 
C.  B  ->  E. y
( y  e.  B  /\  -.  y  e.  A
) )
2 prnmadd 8616 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  y  e.  B )  ->  E. x ( y  +Q  x )  e.  B )
32anim2i 555 . . . . . . . 8  |-  ( ( -.  y  e.  A  /\  ( B  e.  P.  /\  y  e.  B ) )  ->  ( -.  y  e.  A  /\  E. x ( y  +Q  x )  e.  B
) )
4 19.42v 1857 . . . . . . . 8  |-  ( E. x ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B )  <->  ( -.  y  e.  A  /\  E. x ( y  +Q  x )  e.  B
) )
53, 4sylibr 205 . . . . . . 7  |-  ( ( -.  y  e.  A  /\  ( B  e.  P.  /\  y  e.  B ) )  ->  E. x
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B ) )
65exp32 591 . . . . . 6  |-  ( -.  y  e.  A  -> 
( B  e.  P.  ->  ( y  e.  B  ->  E. x ( -.  y  e.  A  /\  ( y  +Q  x
)  e.  B ) ) ) )
76com3l 77 . . . . 5  |-  ( B  e.  P.  ->  (
y  e.  B  -> 
( -.  y  e.  A  ->  E. x
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B ) ) ) )
87imp3a 422 . . . 4  |-  ( B  e.  P.  ->  (
( y  e.  B  /\  -.  y  e.  A
)  ->  E. x
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B ) ) )
98eximdv 1613 . . 3  |-  ( B  e.  P.  ->  ( E. y ( y  e.  B  /\  -.  y  e.  A )  ->  E. y E. x ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) ) )
101, 9syl5 30 . 2  |-  ( B  e.  P.  ->  ( A  C.  B  ->  E. y E. x ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) ) )
11 ltexprlem.1 . . . . 5  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
1211abeq2i 2391 . . . 4  |-  ( x  e.  C  <->  E. y
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B ) )
1312exbii 1574 . . 3  |-  ( E. x  x  e.  C  <->  E. x E. y ( -.  y  e.  A  /\  ( y  +Q  x
)  e.  B ) )
14 n0 3465 . . 3  |-  ( C  =/=  (/)  <->  E. x  x  e.  C )
15 excom 1790 . . 3  |-  ( E. y E. x ( -.  y  e.  A  /\  ( y  +Q  x
)  e.  B )  <->  E. x E. y ( -.  y  e.  A  /\  ( y  +Q  x
)  e.  B ) )
1613, 14, 153bitr4i 270 . 2  |-  ( C  =/=  (/)  <->  E. y E. x
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B ) )
1710, 16syl6ibr 220 1  |-  ( B  e.  P.  ->  ( A  C.  B  ->  C  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360   E.wex 1533    = wceq 1628    e. wcel 1688   {cab 2270    =/= wne 2447    C. wpss 3154   (/)c0 3456  (class class class)co 5819    +Q cplq 8472   P.cnp 8476
This theorem is referenced by:  ltexprlem5  8659
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-recs 6383  df-rdg 6418  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6655  df-ni 8491  df-pli 8492  df-mi 8493  df-lti 8494  df-plpq 8527  df-mpq 8528  df-ltpq 8529  df-enq 8530  df-nq 8531  df-erq 8532  df-plq 8533  df-mq 8534  df-1nq 8535  df-ltnq 8537  df-np 8600
  Copyright terms: Public domain W3C validator