MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem5 Unicode version

Theorem ltexprlem5 8618
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
Assertion
Ref Expression
ltexprlem5  |-  ( ( B  e.  P.  /\  A  C.  B )  ->  C  e.  P. )
Distinct variable groups:    x, y, A    x, B, y    x, C
Allowed substitution hint:    C( y)

Proof of Theorem ltexprlem5
StepHypRef Expression
1 ltexprlem.1 . . . . . 6  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
21ltexprlem1 8614 . . . . 5  |-  ( B  e.  P.  ->  ( A  C.  B  ->  C  =/=  (/) ) )
3 0pss 3453 . . . . 5  |-  ( (/)  C.  C  <->  C  =/=  (/) )
42, 3syl6ibr 220 . . . 4  |-  ( B  e.  P.  ->  ( A  C.  B  ->  (/)  C.  C
) )
54imp 420 . . 3  |-  ( ( B  e.  P.  /\  A  C.  B )  ->  (/)  C.  C )
61ltexprlem2 8615 . . . 4  |-  ( B  e.  P.  ->  C  C.  Q. )
76adantr 453 . . 3  |-  ( ( B  e.  P.  /\  A  C.  B )  ->  C  C.  Q. )
81ltexprlem3 8616 . . . . . 6  |-  ( B  e.  P.  ->  (
x  e.  C  ->  A. z ( z  <Q  x  ->  z  e.  C
) ) )
91ltexprlem4 8617 . . . . . . 7  |-  ( B  e.  P.  ->  (
x  e.  C  ->  E. z ( z  e.  C  /\  x  <Q  z ) ) )
10 df-rex 2522 . . . . . . 7  |-  ( E. z  e.  C  x 
<Q  z  <->  E. z ( z  e.  C  /\  x  <Q  z ) )
119, 10syl6ibr 220 . . . . . 6  |-  ( B  e.  P.  ->  (
x  e.  C  ->  E. z  e.  C  x  <Q  z ) )
128, 11jcad 521 . . . . 5  |-  ( B  e.  P.  ->  (
x  e.  C  -> 
( A. z ( z  <Q  x  ->  z  e.  C )  /\  E. z  e.  C  x 
<Q  z ) ) )
1312ralrimiv 2598 . . . 4  |-  ( B  e.  P.  ->  A. x  e.  C  ( A. z ( z  <Q  x  ->  z  e.  C
)  /\  E. z  e.  C  x  <Q  z ) )
1413adantr 453 . . 3  |-  ( ( B  e.  P.  /\  A  C.  B )  ->  A. x  e.  C  ( A. z ( z 
<Q  x  ->  z  e.  C )  /\  E. z  e.  C  x  <Q  z ) )
155, 7, 14jca31 522 . 2  |-  ( ( B  e.  P.  /\  A  C.  B )  -> 
( ( (/)  C.  C  /\  C  C.  Q. )  /\  A. x  e.  C  ( A. z ( z 
<Q  x  ->  z  e.  C )  /\  E. z  e.  C  x  <Q  z ) ) )
16 elnp 8565 . 2  |-  ( C  e.  P.  <->  ( ( (/)  C.  C  /\  C  C.  Q. )  /\  A. x  e.  C  ( A. z ( z  <Q  x  ->  z  e.  C
)  /\  E. z  e.  C  x  <Q  z ) ) )
1715, 16sylibr 205 1  |-  ( ( B  e.  P.  /\  A  C.  B )  ->  C  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360   A.wal 1532   E.wex 1537    = wceq 1619    e. wcel 1621   {cab 2242    =/= wne 2419   A.wral 2516   E.wrex 2517    C. wpss 3114   (/)c0 3416   class class class wbr 3983  (class class class)co 5778   Q.cnq 8428    +Q cplq 8431    <Q cltq 8434   P.cnp 8435
This theorem is referenced by:  ltexprlem6  8619  ltexprlem7  8620  ltexpri  8621
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-inf2 7296
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-recs 6342  df-rdg 6377  df-1o 6433  df-oadd 6437  df-omul 6438  df-er 6614  df-ni 8450  df-pli 8451  df-mi 8452  df-lti 8453  df-plpq 8486  df-mpq 8487  df-ltpq 8488  df-enq 8489  df-nq 8490  df-erq 8491  df-plq 8492  df-mq 8493  df-1nq 8494  df-ltnq 8496  df-np 8559
  Copyright terms: Public domain W3C validator