MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem6 Unicode version

Theorem ltexprlem6 8665
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
Assertion
Ref Expression
ltexprlem6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  ( A  +P.  C )  C_  B )
Distinct variable groups:    x, y, A    x, B, y    x, C
Allowed substitution hint:    C( y)

Proof of Theorem ltexprlem6
Dummy variables  z  w  v  f  g  h  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . . 6  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
21ltexprlem5 8664 . . . . 5  |-  ( ( B  e.  P.  /\  A  C.  B )  ->  C  e.  P. )
3 df-plp 8607 . . . . . 6  |-  +P.  =  ( z  e.  P. ,  y  e.  P.  |->  { f  |  E. g  e.  z  E. h  e.  y  f  =  ( g  +Q  h ) } )
4 addclnq 8569 . . . . . 6  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
53, 4genpelv 8624 . . . . 5  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( z  e.  ( A  +P.  C )  <->  E. w  e.  A  E. x  e.  C  z  =  ( w  +Q  x ) ) )
62, 5sylan2 460 . . . 4  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  A  C.  B ) )  ->  ( z  e.  ( A  +P.  C
)  <->  E. w  e.  A  E. x  e.  C  z  =  ( w  +Q  x ) ) )
71abeq2i 2390 . . . . . . . . . . . 12  |-  ( x  e.  C  <->  E. y
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B ) )
8 elprnq 8615 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  P.  /\  ( y  +Q  x
)  e.  B )  ->  ( y  +Q  x )  e.  Q. )
9 addnqf 8572 . . . . . . . . . . . . . . . . . . . . . 22  |-  +Q  :
( Q.  X.  Q. )
--> Q.
109fdmi 5394 . . . . . . . . . . . . . . . . . . . . 21  |-  dom  +Q  =  ( Q.  X.  Q. )
11 0nnq 8548 . . . . . . . . . . . . . . . . . . . . 21  |-  -.  (/)  e.  Q.
1210, 11ndmovrcl 6006 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  +Q  x )  e.  Q.  ->  (
y  e.  Q.  /\  x  e.  Q. )
)
1312simpld 445 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  +Q  x )  e.  Q.  ->  y  e.  Q. )
148, 13syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  P.  /\  ( y  +Q  x
)  e.  B )  ->  y  e.  Q. )
15 prub 8618 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  P.  /\  w  e.  A )  /\  y  e.  Q. )  ->  ( -.  y  e.  A  ->  w  <Q  y ) )
1614, 15sylan2 460 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  P.  /\  w  e.  A )  /\  ( B  e. 
P.  /\  ( y  +Q  x )  e.  B
) )  ->  ( -.  y  e.  A  ->  w  <Q  y )
)
1712simprd 449 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  +Q  x )  e.  Q.  ->  x  e.  Q. )
18 vex 2791 . . . . . . . . . . . . . . . . . . . . 21  |-  w  e. 
_V
19 vex 2791 . . . . . . . . . . . . . . . . . . . . 21  |-  y  e. 
_V
20 ltanq 8595 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  e.  Q.  ->  (
z  <Q  v  <->  ( u  +Q  z )  <Q  (
u  +Q  v ) ) )
21 vex 2791 . . . . . . . . . . . . . . . . . . . . 21  |-  x  e. 
_V
22 addcomnq 8575 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  +Q  v )  =  ( v  +Q  z
)
2318, 19, 20, 21, 22caovord2 6032 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  Q.  ->  (
w  <Q  y  <->  ( w  +Q  x )  <Q  (
y  +Q  x ) ) )
248, 17, 233syl 18 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  P.  /\  ( y  +Q  x
)  e.  B )  ->  ( w  <Q  y  <-> 
( w  +Q  x
)  <Q  ( y  +Q  x ) ) )
25 prcdnq 8617 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  P.  /\  ( y  +Q  x
)  e.  B )  ->  ( ( w  +Q  x )  <Q 
( y  +Q  x
)  ->  ( w  +Q  x )  e.  B
) )
2624, 25sylbid 206 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  P.  /\  ( y  +Q  x
)  e.  B )  ->  ( w  <Q  y  ->  ( w  +Q  x )  e.  B
) )
2726adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  P.  /\  w  e.  A )  /\  ( B  e. 
P.  /\  ( y  +Q  x )  e.  B
) )  ->  (
w  <Q  y  ->  (
w  +Q  x )  e.  B ) )
2816, 27syld 40 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  P.  /\  w  e.  A )  /\  ( B  e. 
P.  /\  ( y  +Q  x )  e.  B
) )  ->  ( -.  y  e.  A  ->  ( w  +Q  x
)  e.  B ) )
2928exp32 588 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  w  e.  A )  ->  ( B  e.  P.  ->  ( ( y  +Q  x )  e.  B  ->  ( -.  y  e.  A  ->  ( w  +Q  x )  e.  B
) ) ) )
3029com34 77 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  w  e.  A )  ->  ( B  e.  P.  ->  ( -.  y  e.  A  ->  ( (
y  +Q  x )  e.  B  ->  (
w  +Q  x )  e.  B ) ) ) )
3130imp4b 573 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  w  e.  A )  /\  B  e.  P. )  ->  ( ( -.  y  e.  A  /\  ( y  +Q  x
)  e.  B )  ->  ( w  +Q  x )  e.  B
) )
3231exlimdv 1664 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  w  e.  A )  /\  B  e.  P. )  ->  ( E. y
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B )  ->  (
w  +Q  x )  e.  B ) )
337, 32syl5bi 208 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  w  e.  A )  /\  B  e.  P. )  ->  ( x  e.  C  ->  ( w  +Q  x )  e.  B
) )
3433exp31 587 . . . . . . . . . 10  |-  ( A  e.  P.  ->  (
w  e.  A  -> 
( B  e.  P.  ->  ( x  e.  C  ->  ( w  +Q  x
)  e.  B ) ) ) )
3534com23 72 . . . . . . . . 9  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( w  e.  A  -> 
( x  e.  C  ->  ( w  +Q  x
)  e.  B ) ) ) )
3635imp43 578 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( w  e.  A  /\  x  e.  C
) )  ->  (
w  +Q  x )  e.  B )
37 eleq1 2343 . . . . . . . . 9  |-  ( z  =  ( w  +Q  x )  ->  (
z  e.  B  <->  ( w  +Q  x )  e.  B
) )
3837biimparc 473 . . . . . . . 8  |-  ( ( ( w  +Q  x
)  e.  B  /\  z  =  ( w  +Q  x ) )  -> 
z  e.  B )
3936, 38sylan 457 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
w  e.  A  /\  x  e.  C )
)  /\  z  =  ( w  +Q  x
) )  ->  z  e.  B )
4039exp31 587 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( w  e.  A  /\  x  e.  C )  ->  (
z  =  ( w  +Q  x )  -> 
z  e.  B ) ) )
4140rexlimdvv 2673 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. w  e.  A  E. x  e.  C  z  =  ( w  +Q  x )  ->  z  e.  B
) )
4241adantrr 697 . . . 4  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  A  C.  B ) )  ->  ( E. w  e.  A  E. x  e.  C  z  =  ( w  +Q  x )  ->  z  e.  B ) )
436, 42sylbid 206 . . 3  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  A  C.  B ) )  ->  ( z  e.  ( A  +P.  C
)  ->  z  e.  B ) )
4443ssrdv 3185 . 2  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  A  C.  B ) )  ->  ( A  +P.  C )  C_  B
)
4544anassrs 629 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  ( A  +P.  C )  C_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269   E.wrex 2544    C_ wss 3152    C. wpss 3153   class class class wbr 4023    X. cxp 4687  (class class class)co 5858   Q.cnq 8474    +Q cplq 8477    <Q cltq 8480   P.cnp 8481    +P. cpp 8483
This theorem is referenced by:  ltexpri  8667
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484  df-er 6660  df-ni 8496  df-pli 8497  df-mi 8498  df-lti 8499  df-plpq 8532  df-mpq 8533  df-ltpq 8534  df-enq 8535  df-nq 8536  df-erq 8537  df-plq 8538  df-mq 8539  df-1nq 8540  df-ltnq 8542  df-np 8605  df-plp 8607
  Copyright terms: Public domain W3C validator