MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem7 Unicode version

Theorem ltexprlem7 8620
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
Assertion
Ref Expression
ltexprlem7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  B  C_  ( A  +P.  C ) )
Distinct variable groups:    x, y, A    x, B, y    x, C
Allowed substitution hint:    C( y)

Proof of Theorem ltexprlem7
StepHypRef Expression
1 ltexprlem.1 . . . . . . . 8  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
21ltexprlem5 8618 . . . . . . 7  |-  ( ( B  e.  P.  /\  A  C.  B )  ->  C  e.  P. )
3 ltaddpr 8612 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  A  <P  ( A  +P.  C ) )
4 addclpr 8596 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  +P.  C
)  e.  P. )
5 ltprord 8608 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  ( A  +P.  C )  e.  P. )  -> 
( A  <P  ( A  +P.  C )  <->  A  C.  ( A  +P.  C ) ) )
64, 5syldan 458 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  <P  ( A  +P.  C )  <->  A  C.  ( A  +P.  C ) ) )
73, 6mpbid 203 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  A  C.  ( A  +P.  C ) )
87pssssd 3234 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  A  C_  ( A  +P.  C ) )
98sseld 3140 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( w  e.  A  ->  w  e.  ( A  +P.  C ) ) )
109a1d 24 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( w  e.  B  ->  ( w  e.  A  ->  w  e.  ( A  +P.  C ) ) ) )
1110a1d 24 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( B  e.  P.  ->  ( w  e.  B  ->  ( w  e.  A  ->  w  e.  ( A  +P.  C ) ) ) ) )
1211com4r 82 . . . . . . . . 9  |-  ( w  e.  A  ->  (
( A  e.  P.  /\  C  e.  P. )  ->  ( B  e.  P.  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) )
1312exp3a 427 . . . . . . . 8  |-  ( w  e.  A  ->  ( A  e.  P.  ->  ( C  e.  P.  ->  ( B  e.  P.  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) ) )
14 prnmadd 8575 . . . . . . . . . . . 12  |-  ( ( B  e.  P.  /\  w  e.  B )  ->  E. v ( w  +Q  v )  e.  B )
1514ex 425 . . . . . . . . . . 11  |-  ( B  e.  P.  ->  (
w  e.  B  ->  E. v ( w  +Q  v )  e.  B
) )
16 elprnq 8569 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  P.  /\  ( w  +Q  v
)  e.  B )  ->  ( w  +Q  v )  e.  Q. )
17 addnqf 8526 . . . . . . . . . . . . . . . . . 18  |-  +Q  :
( Q.  X.  Q. )
--> Q.
1817fdmi 5318 . . . . . . . . . . . . . . . . 17  |-  dom  +Q  =  ( Q.  X.  Q. )
19 0nnq 8502 . . . . . . . . . . . . . . . . 17  |-  -.  (/)  e.  Q.
2018, 19ndmovrcl 5926 . . . . . . . . . . . . . . . 16  |-  ( ( w  +Q  v )  e.  Q.  ->  (
w  e.  Q.  /\  v  e.  Q. )
)
2116, 20syl 17 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  P.  /\  ( w  +Q  v
)  e.  B )  ->  ( w  e. 
Q.  /\  v  e.  Q. ) )
2221simpld 447 . . . . . . . . . . . . . 14  |-  ( ( B  e.  P.  /\  ( w  +Q  v
)  e.  B )  ->  w  e.  Q. )
23 vex 2760 . . . . . . . . . . . . . . . . . . 19  |-  v  e. 
_V
2423prlem934 8611 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  P.  ->  E. z  e.  A  -.  (
z  +Q  v )  e.  A )
2524adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  E. z  e.  A  -.  ( z  +Q  v
)  e.  A )
26 prub 8572 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  w  e.  Q. )  ->  ( -.  w  e.  A  ->  z  <Q  w ) )
27 ltexnq 8553 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  e.  Q.  ->  (
z  <Q  w  <->  E. x
( z  +Q  x
)  =  w ) )
2827adantl 454 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  w  e.  Q. )  ->  ( z  <Q  w 
<->  E. x ( z  +Q  x )  =  w ) )
2926, 28sylibd 207 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  w  e.  Q. )  ->  ( -.  w  e.  A  ->  E. x
( z  +Q  x
)  =  w ) )
3029ex 425 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( w  e.  Q.  ->  ( -.  w  e.  A  ->  E. x
( z  +Q  x
)  =  w ) ) )
3130ad2ant2r 730 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  P.  /\  C  e.  P. )  /\  ( z  e.  A  /\  -.  ( z  +Q  v )  e.  A
) )  ->  (
w  e.  Q.  ->  ( -.  w  e.  A  ->  E. x ( z  +Q  x )  =  w ) ) )
32 vex 2760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  z  e. 
_V
33 vex 2760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  x  e. 
_V
34 addcomnq 8529 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( f  +Q  g )  =  ( g  +Q  f
)
35 addassnq 8536 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( f  +Q  g )  +Q  h )  =  ( f  +Q  (
g  +Q  h ) )
3632, 23, 33, 34, 35caov32 5967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( z  +Q  v )  +Q  x )  =  ( ( z  +Q  x )  +Q  v
)
37 oveq1 5785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( z  +Q  x )  =  w  ->  (
( z  +Q  x
)  +Q  v )  =  ( w  +Q  v ) )
3836, 37syl5eq 2300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( z  +Q  x )  =  w  ->  (
( z  +Q  v
)  +Q  x )  =  ( w  +Q  v ) )
3938eleq1d 2322 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( z  +Q  x )  =  w  ->  (
( ( z  +Q  v )  +Q  x
)  e.  B  <->  ( w  +Q  v )  e.  B
) )
4039biimpar 473 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( z  +Q  x
)  =  w  /\  ( w  +Q  v
)  e.  B )  ->  ( ( z  +Q  v )  +Q  x )  e.  B
)
41 ovex 5803 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( z  +Q  v )  e. 
_V
42 eleq1 2316 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( y  =  ( z  +Q  v )  ->  (
y  e.  A  <->  ( z  +Q  v )  e.  A
) )
4342notbid 287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( y  =  ( z  +Q  v )  ->  ( -.  y  e.  A  <->  -.  ( z  +Q  v
)  e.  A ) )
44 oveq1 5785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( y  =  ( z  +Q  v )  ->  (
y  +Q  x )  =  ( ( z  +Q  v )  +Q  x ) )
4544eleq1d 2322 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( y  =  ( z  +Q  v )  ->  (
( y  +Q  x
)  e.  B  <->  ( (
z  +Q  v )  +Q  x )  e.  B ) )
4643, 45anbi12d 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( y  =  ( z  +Q  v )  ->  (
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B )  <->  ( -.  ( z  +Q  v
)  e.  A  /\  ( ( z  +Q  v )  +Q  x
)  e.  B ) ) )
4741, 46cla4ev 2843 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( -.  ( z  +Q  v )  e.  A  /\  ( ( z  +Q  v )  +Q  x
)  e.  B )  ->  E. y ( -.  y  e.  A  /\  ( y  +Q  x
)  e.  B ) )
481abeq2i 2363 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( x  e.  C  <->  E. y
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B ) )
4947, 48sylibr 205 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( -.  ( z  +Q  v )  e.  A  /\  ( ( z  +Q  v )  +Q  x
)  e.  B )  ->  x  e.  C
)
5040, 49sylan2 462 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( -.  ( z  +Q  v )  e.  A  /\  ( ( z  +Q  x )  =  w  /\  ( w  +Q  v )  e.  B
) )  ->  x  e.  C )
51 df-plp 8561 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  +P.  =  ( x  e.  P. ,  w  e.  P.  |->  { z  |  E. f  e.  x  E. v  e.  w  z  =  ( f  +Q  v ) } )
52 addclnq 8523 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( f  e.  Q.  /\  v  e.  Q. )  ->  ( f  +Q  v
)  e.  Q. )
5351, 52genpprecl 8579 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( ( z  e.  A  /\  x  e.  C )  ->  (
z  +Q  x )  e.  ( A  +P.  C ) ) )
5450, 53sylan2i 639 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( ( z  e.  A  /\  ( -.  ( z  +Q  v
)  e.  A  /\  ( ( z  +Q  x )  =  w  /\  ( w  +Q  v )  e.  B
) ) )  -> 
( z  +Q  x
)  e.  ( A  +P.  C ) ) )
5554exp4d 595 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( z  e.  A  ->  ( -.  ( z  +Q  v )  e.  A  ->  ( (
( z  +Q  x
)  =  w  /\  ( w  +Q  v
)  e.  B )  ->  ( z  +Q  x )  e.  ( A  +P.  C ) ) ) ) )
5655imp42 580 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e. 
P.  /\  C  e.  P. )  /\  (
z  e.  A  /\  -.  ( z  +Q  v
)  e.  A ) )  /\  ( ( z  +Q  x )  =  w  /\  (
w  +Q  v )  e.  B ) )  ->  ( z  +Q  x )  e.  ( A  +P.  C ) )
57 eleq1 2316 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( z  +Q  x )  =  w  ->  (
( z  +Q  x
)  e.  ( A  +P.  C )  <->  w  e.  ( A  +P.  C ) ) )
5857ad2antrl 711 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e. 
P.  /\  C  e.  P. )  /\  (
z  e.  A  /\  -.  ( z  +Q  v
)  e.  A ) )  /\  ( ( z  +Q  x )  =  w  /\  (
w  +Q  v )  e.  B ) )  ->  ( ( z  +Q  x )  e.  ( A  +P.  C
)  <->  w  e.  ( A  +P.  C ) ) )
5956, 58mpbid 203 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e. 
P.  /\  C  e.  P. )  /\  (
z  e.  A  /\  -.  ( z  +Q  v
)  e.  A ) )  /\  ( ( z  +Q  x )  =  w  /\  (
w  +Q  v )  e.  B ) )  ->  w  e.  ( A  +P.  C ) )
6059exp32 591 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  P.  /\  C  e.  P. )  /\  ( z  e.  A  /\  -.  ( z  +Q  v )  e.  A
) )  ->  (
( z  +Q  x
)  =  w  -> 
( ( w  +Q  v )  e.  B  ->  w  e.  ( A  +P.  C ) ) ) )
6160exlimdv 1933 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  P.  /\  C  e.  P. )  /\  ( z  e.  A  /\  -.  ( z  +Q  v )  e.  A
) )  ->  ( E. x ( z  +Q  x )  =  w  ->  ( ( w  +Q  v )  e.  B  ->  w  e.  ( A  +P.  C ) ) ) )
6231, 61syl6d 66 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  P.  /\  C  e.  P. )  /\  ( z  e.  A  /\  -.  ( z  +Q  v )  e.  A
) )  ->  (
w  e.  Q.  ->  ( -.  w  e.  A  ->  ( ( w  +Q  v )  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) )
6362exp32 591 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( z  e.  A  ->  ( -.  ( z  +Q  v )  e.  A  ->  ( w  e.  Q.  ->  ( -.  w  e.  A  ->  ( ( w  +Q  v
)  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) ) ) )
6463rexlimdv 2639 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( E. z  e.  A  -.  ( z  +Q  v )  e.  A  ->  ( w  e.  Q.  ->  ( -.  w  e.  A  ->  ( ( w  +Q  v
)  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) ) )
6525, 64mpd 16 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( w  e.  Q.  ->  ( -.  w  e.  A  ->  ( (
w  +Q  v )  e.  B  ->  w  e.  ( A  +P.  C
) ) ) ) )
6665com14 84 . . . . . . . . . . . . . . 15  |-  ( ( w  +Q  v )  e.  B  ->  (
w  e.  Q.  ->  ( -.  w  e.  A  ->  ( ( A  e. 
P.  /\  C  e.  P. )  ->  w  e.  ( A  +P.  C
) ) ) ) )
6766adantl 454 . . . . . . . . . . . . . 14  |-  ( ( B  e.  P.  /\  ( w  +Q  v
)  e.  B )  ->  ( w  e. 
Q.  ->  ( -.  w  e.  A  ->  ( ( A  e.  P.  /\  C  e.  P. )  ->  w  e.  ( A  +P.  C ) ) ) ) )
6822, 67mpd 16 . . . . . . . . . . . . 13  |-  ( ( B  e.  P.  /\  ( w  +Q  v
)  e.  B )  ->  ( -.  w  e.  A  ->  ( ( A  e.  P.  /\  C  e.  P. )  ->  w  e.  ( A  +P.  C ) ) ) )
6968ex 425 . . . . . . . . . . . 12  |-  ( B  e.  P.  ->  (
( w  +Q  v
)  e.  B  -> 
( -.  w  e.  A  ->  ( ( A  e.  P.  /\  C  e.  P. )  ->  w  e.  ( A  +P.  C
) ) ) ) )
7069exlimdv 1933 . . . . . . . . . . 11  |-  ( B  e.  P.  ->  ( E. v ( w  +Q  v )  e.  B  ->  ( -.  w  e.  A  ->  ( ( A  e.  P.  /\  C  e.  P. )  ->  w  e.  ( A  +P.  C
) ) ) ) )
7115, 70syld 42 . . . . . . . . . 10  |-  ( B  e.  P.  ->  (
w  e.  B  -> 
( -.  w  e.  A  ->  ( ( A  e.  P.  /\  C  e.  P. )  ->  w  e.  ( A  +P.  C
) ) ) ) )
7271com4t 81 . . . . . . . . 9  |-  ( -.  w  e.  A  -> 
( ( A  e. 
P.  /\  C  e.  P. )  ->  ( B  e.  P.  ->  (
w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) )
7372exp3a 427 . . . . . . . 8  |-  ( -.  w  e.  A  -> 
( A  e.  P.  ->  ( C  e.  P.  ->  ( B  e.  P.  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) ) )
7413, 73pm2.61i 158 . . . . . . 7  |-  ( A  e.  P.  ->  ( C  e.  P.  ->  ( B  e.  P.  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) )
752, 74syl5 30 . . . . . 6  |-  ( A  e.  P.  ->  (
( B  e.  P.  /\  A  C.  B )  ->  ( B  e. 
P.  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) )
7675exp3a 427 . . . . 5  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( A  C.  B  -> 
( B  e.  P.  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) ) )
7776com34 79 . . . 4  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( B  e.  P.  ->  ( A  C.  B  -> 
( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) ) )
7877pm2.43d 46 . . 3  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( A  C.  B  -> 
( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) )
7978imp31 423 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) )
8079ssrdv 3146 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  B  C_  ( A  +P.  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621   {cab 2242   E.wrex 2517    C_ wss 3113    C. wpss 3114   class class class wbr 3983    X. cxp 4645  (class class class)co 5778   Q.cnq 8428    +Q cplq 8431    <Q cltq 8434   P.cnp 8435    +P. cpp 8437    <P cltp 8439
This theorem is referenced by:  ltexpri  8621
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-inf2 7296
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-recs 6342  df-rdg 6377  df-1o 6433  df-oadd 6437  df-omul 6438  df-er 6614  df-ni 8450  df-pli 8451  df-mi 8452  df-lti 8453  df-plpq 8486  df-mpq 8487  df-ltpq 8488  df-enq 8489  df-nq 8490  df-erq 8491  df-plq 8492  df-mq 8493  df-1nq 8494  df-rq 8495  df-ltnq 8496  df-np 8559  df-plp 8561  df-ltp 8563
  Copyright terms: Public domain W3C validator