MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmnq Unicode version

Theorem ltmnq 8592
Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltmnq  |-  ( C  e.  Q.  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.

Proof of Theorem ltmnq
StepHypRef Expression
1 mulnqf 8569 . . 3  |-  .Q  :
( Q.  X.  Q. )
--> Q.
21fdmi 5360 . 2  |-  dom  .Q  =  ( Q.  X.  Q. )
3 ltrelnq 8546 . 2  |-  <Q  C_  ( Q.  X.  Q. )
4 0nnq 8544 . 2  |-  -.  (/)  e.  Q.
5 elpqn 8545 . . . . . . . . . 10  |-  ( C  e.  Q.  ->  C  e.  ( N.  X.  N. ) )
653ad2ant3 980 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  C  e.  ( N.  X.  N. ) )
7 xp1st 6111 . . . . . . . . 9  |-  ( C  e.  ( N.  X.  N. )  ->  ( 1st `  C )  e.  N. )
86, 7syl 17 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 1st `  C )  e. 
N. )
9 xp2nd 6112 . . . . . . . . 9  |-  ( C  e.  ( N.  X.  N. )  ->  ( 2nd `  C )  e.  N. )
106, 9syl 17 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  C )  e. 
N. )
11 mulclpi 8513 . . . . . . . 8  |-  ( ( ( 1st `  C
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 1st `  C
)  .N  ( 2nd `  C ) )  e. 
N. )
128, 10, 11syl2anc 644 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 1st `  C
)  .N  ( 2nd `  C ) )  e. 
N. )
13 ltmpi 8524 . . . . . . 7  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  e. 
N.  ->  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 1st `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) ) )
1412, 13syl 17 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 1st `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) ) )
15 fvex 5500 . . . . . . . 8  |-  ( 1st `  C )  e.  _V
16 fvex 5500 . . . . . . . 8  |-  ( 2nd `  C )  e.  _V
17 fvex 5500 . . . . . . . 8  |-  ( 1st `  A )  e.  _V
18 mulcompi 8516 . . . . . . . 8  |-  ( x  .N  y )  =  ( y  .N  x
)
19 mulasspi 8517 . . . . . . . 8  |-  ( ( x  .N  y )  .N  z )  =  ( x  .N  (
y  .N  z ) )
20 fvex 5500 . . . . . . . 8  |-  ( 2nd `  B )  e.  _V
2115, 16, 17, 18, 19, 20caov4 6013 . . . . . . 7  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  C )  .N  ( 1st `  A
) )  .N  (
( 2nd `  C
)  .N  ( 2nd `  B ) ) )
22 fvex 5500 . . . . . . . 8  |-  ( 1st `  B )  e.  _V
23 fvex 5500 . . . . . . . 8  |-  ( 2nd `  A )  e.  _V
2415, 16, 22, 18, 19, 23caov4 6013 . . . . . . 7  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  =  ( ( ( 1st `  C )  .N  ( 1st `  B
) )  .N  (
( 2nd `  C
)  .N  ( 2nd `  A ) ) )
2521, 24breq12i 4034 . . . . . 6  |-  ( ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 1st `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) )  <->  ( ( ( 1st `  C )  .N  ( 1st `  A
) )  .N  (
( 2nd `  C
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 1st `  C )  .N  ( 1st `  B ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A ) ) ) )
2614, 25syl6bb 254 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( 1st `  C
)  .N  ( 1st `  A ) )  .N  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 1st `  C )  .N  ( 1st `  B ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A ) ) ) ) )
27 ordpipq 8562 . . . . 5  |-  ( <.
( ( 1st `  C
)  .N  ( 1st `  A ) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  A ) ) >.  <pQ 
<. ( ( 1st `  C
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) >.  <->  ( ( ( 1st `  C
)  .N  ( 1st `  A ) )  .N  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 1st `  C )  .N  ( 1st `  B ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A ) ) ) )
2826, 27syl6bbr 256 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  <. ( ( 1st `  C )  .N  ( 1st `  A
) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  A ) ) >.  <pQ 
<. ( ( 1st `  C
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) >.
) )
29 elpqn 8545 . . . . . . 7  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
30293ad2ant1 978 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  A  e.  ( N.  X.  N. ) )
31 mulpipq2 8559 . . . . . 6  |-  ( ( C  e.  ( N. 
X.  N. )  /\  A  e.  ( N.  X.  N. ) )  ->  ( C  .pQ  A )  = 
<. ( ( 1st `  C
)  .N  ( 1st `  A ) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  A ) ) >.
)
326, 30, 31syl2anc 644 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  .pQ  A )  = 
<. ( ( 1st `  C
)  .N  ( 1st `  A ) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  A ) ) >.
)
33 elpqn 8545 . . . . . . 7  |-  ( B  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
34333ad2ant2 979 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  B  e.  ( N.  X.  N. ) )
35 mulpipq2 8559 . . . . . 6  |-  ( ( C  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( C  .pQ  B )  = 
<. ( ( 1st `  C
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) >.
)
366, 34, 35syl2anc 644 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  .pQ  B )  = 
<. ( ( 1st `  C
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) >.
)
3732, 36breq12d 4038 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( C  .pQ  A
)  <pQ  ( C  .pQ  B )  <->  <. ( ( 1st `  C )  .N  ( 1st `  A ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  A ) )
>.  <pQ  <. ( ( 1st `  C )  .N  ( 1st `  B ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  B ) )
>. ) )
3828, 37bitr4d 249 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( C  .pQ  A )  <pQ  ( C 
.pQ  B ) ) )
39 ordpinq 8563 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
40393adant3 977 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
41 mulpqnq 8561 . . . . . . 7  |-  ( ( C  e.  Q.  /\  A  e.  Q. )  ->  ( C  .Q  A
)  =  ( /Q
`  ( C  .pQ  A ) ) )
4241ancoms 441 . . . . . 6  |-  ( ( A  e.  Q.  /\  C  e.  Q. )  ->  ( C  .Q  A
)  =  ( /Q
`  ( C  .pQ  A ) ) )
43423adant2 976 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  .Q  A )  =  ( /Q `  ( C  .pQ  A ) ) )
44 mulpqnq 8561 . . . . . . 7  |-  ( ( C  e.  Q.  /\  B  e.  Q. )  ->  ( C  .Q  B
)  =  ( /Q
`  ( C  .pQ  B ) ) )
4544ancoms 441 . . . . . 6  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  ( C  .Q  B
)  =  ( /Q
`  ( C  .pQ  B ) ) )
46453adant1 975 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  .Q  B )  =  ( /Q `  ( C  .pQ  B ) ) )
4743, 46breq12d 4038 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( C  .Q  A
)  <Q  ( C  .Q  B )  <->  ( /Q `  ( C  .pQ  A
) )  <Q  ( /Q `  ( C  .pQ  B ) ) ) )
48 lterpq 8590 . . . 4  |-  ( ( C  .pQ  A ) 
<pQ  ( C  .pQ  B
)  <->  ( /Q `  ( C  .pQ  A ) )  <Q  ( /Q `  ( C  .pQ  B
) ) )
4947, 48syl6bbr 256 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( C  .Q  A
)  <Q  ( C  .Q  B )  <->  ( C  .pQ  A )  <pQ  ( C 
.pQ  B ) ) )
5038, 40, 493bitr4d 278 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
512, 3, 4, 50ndmovord 5972 1  |-  ( C  e.  Q.  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ w3a 936    = wceq 1624    e. wcel 1685   <.cop 3645   class class class wbr 4025    X. cxp 4687   ` cfv 5222  (class class class)co 5820   1stc1st 6082   2ndc2nd 6083   N.cnpi 8462    .N cmi 8464    <N clti 8465    .pQ cmpq 8467    <pQ cltpq 8468   Q.cnq 8470   /Qcerq 8472    .Q cmq 8474    <Q cltq 8476
This theorem is referenced by:  ltaddnq  8594  ltrnq  8599  addclprlem1  8636  mulclprlem  8639  mulclpr  8640  distrlem4pr  8646  1idpr  8649  prlem934  8653  prlem936  8667  reclem3pr  8669  reclem4pr  8670
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-omul 6480  df-er 6656  df-ni 8492  df-mi 8494  df-lti 8495  df-mpq 8529  df-ltpq 8530  df-enq 8531  df-nq 8532  df-erq 8533  df-mq 8535  df-1nq 8536  df-ltnq 8538
  Copyright terms: Public domain W3C validator