MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmul1 Unicode version

Theorem ltmul1 9606
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltmul1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) ) )

Proof of Theorem ltmul1
StepHypRef Expression
1 ltmul1a 9605 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  ( A  x.  C )  <  ( B  x.  C
) )
21ex 423 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  ->  ( A  x.  C
)  <  ( B  x.  C ) ) )
3 oveq1 5865 . . . . . 6  |-  ( A  =  B  ->  ( A  x.  C )  =  ( B  x.  C ) )
43a1i 10 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  =  B  ->  ( A  x.  C )  =  ( B  x.  C ) ) )
5 ltmul1a 9605 . . . . . . 7  |-  ( ( ( B  e.  RR  /\  A  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  B  < 
A )  ->  ( B  x.  C )  <  ( A  x.  C
) )
65ex 423 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( B  <  A  ->  ( B  x.  C
)  <  ( A  x.  C ) ) )
763com12 1155 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( B  <  A  ->  ( B  x.  C
)  <  ( A  x.  C ) ) )
84, 7orim12d 811 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  =  B  \/  B  < 
A )  ->  (
( A  x.  C
)  =  ( B  x.  C )  \/  ( B  x.  C
)  <  ( A  x.  C ) ) ) )
98con3d 125 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( -.  ( ( A  x.  C )  =  ( B  x.  C )  \/  ( B  x.  C )  <  ( A  x.  C
) )  ->  -.  ( A  =  B  \/  B  <  A ) ) )
10 simp1 955 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  A  e.  RR )
11 simp3l 983 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  C  e.  RR )
1210, 11remulcld 8863 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  x.  C
)  e.  RR )
13 simp2 956 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  B  e.  RR )
1413, 11remulcld 8863 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( B  x.  C
)  e.  RR )
1512, 14lttrid 8957 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  x.  C )  <  ( B  x.  C )  <->  -.  ( ( A  x.  C )  =  ( B  x.  C )  \/  ( B  x.  C )  <  ( A  x.  C )
) ) )
1610, 13lttrid 8957 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  -.  ( A  =  B  \/  B  <  A
) ) )
179, 15, 163imtr4d 259 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  x.  C )  <  ( B  x.  C )  ->  A  <  B ) )
182, 17impbid 183 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023  (class class class)co 5858   RRcr 8736   0cc0 8737    x. cmul 8742    < clt 8867
This theorem is referenced by:  ltmul2  9607  lemul1  9608  ltdiv1  9620  ltdiv23  9647  recp1lt1  9654  ltmul1i  9675  ltdivp1i  9683  ltmul1d  10427  expmulnbnd  11233  discr1  11237  mertenslem1  12340  qnumgt0  12821  4sqlem12  13003  pgpfaclem2  15317  mbfi1fseqlem4  19073  itg2monolem1  19105  dgrcolem2  19655  tangtx  19873  ftalem1  20310  basellem4  20321  lgsquadlem1  20593  lgsquadlem2  20594  pntpbnd1  20735  ostth2lem1  20767  nn0prpwlem  26238  pellexlem2  26915  stoweidlem11  27760  stoweidlem13  27762  stoweidlem26  27775  stoweidlem34  27783  stoweidlem59  27808
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-ltxr 8872  df-sub 9039  df-neg 9040
  Copyright terms: Public domain W3C validator