MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmul1a Structured version   Unicode version

Theorem ltmul1a 9851
Description: Lemma for ltmul1 9852. Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 15-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltmul1a  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  ( A  x.  C )  <  ( B  x.  C
) )

Proof of Theorem ltmul1a
StepHypRef Expression
1 simpl2 961 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  B  e.  RR )
2 simpl1 960 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  A  e.  RR )
31, 2resubcld 9457 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  ( B  -  A )  e.  RR )
4 simpl3l 1012 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  C  e.  RR )
5 simpr 448 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  A  <  B )
62, 1posdifd 9605 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
75, 6mpbid 202 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  0  <  ( B  -  A
) )
8 simpl3r 1013 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  0  <  C )
93, 4, 7, 8mulgt0d 9217 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  0  <  ( ( B  -  A )  x.  C
) )
101recnd 9106 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  B  e.  CC )
112recnd 9106 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  A  e.  CC )
124recnd 9106 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  C  e.  CC )
1310, 11, 12subdird 9482 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  (
( B  -  A
)  x.  C )  =  ( ( B  x.  C )  -  ( A  x.  C
) ) )
149, 13breqtrd 4228 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  0  <  ( ( B  x.  C )  -  ( A  x.  C )
) )
152, 4remulcld 9108 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  ( A  x.  C )  e.  RR )
161, 4remulcld 9108 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  ( B  x.  C )  e.  RR )
1715, 16posdifd 9605 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  (
( A  x.  C
)  <  ( B  x.  C )  <->  0  <  ( ( B  x.  C
)  -  ( A  x.  C ) ) ) )
1814, 17mpbird 224 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  ( A  x.  C )  <  ( B  x.  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    e. wcel 1725   class class class wbr 4204  (class class class)co 6073   RRcr 8981   0cc0 8982    x. cmul 8987    < clt 9112    - cmin 9283
This theorem is referenced by:  ltmul1  9852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-ltxr 9117  df-sub 9285  df-neg 9286
  Copyright terms: Public domain W3C validator