MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmul1a Unicode version

Theorem ltmul1a 9607
Description: Lemma for ltmul1 9608. Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 15-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltmul1a  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  ( A  x.  C )  <  ( B  x.  C
) )

Proof of Theorem ltmul1a
StepHypRef Expression
1 simpl2 959 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  B  e.  RR )
2 simpl1 958 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  A  e.  RR )
31, 2resubcld 9213 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  ( B  -  A )  e.  RR )
4 simpl3l 1010 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  C  e.  RR )
5 simpr 447 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  A  <  B )
62, 1posdifd 9361 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
75, 6mpbid 201 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  0  <  ( B  -  A
) )
8 simpl3r 1011 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  0  <  C )
93, 4, 7, 8mulgt0d 8973 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  0  <  ( ( B  -  A )  x.  C
) )
101recnd 8863 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  B  e.  CC )
112recnd 8863 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  A  e.  CC )
124recnd 8863 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  C  e.  CC )
1310, 11, 12subdird 9238 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  (
( B  -  A
)  x.  C )  =  ( ( B  x.  C )  -  ( A  x.  C
) ) )
149, 13breqtrd 4049 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  0  <  ( ( B  x.  C )  -  ( A  x.  C )
) )
152, 4remulcld 8865 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  ( A  x.  C )  e.  RR )
161, 4remulcld 8865 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  ( B  x.  C )  e.  RR )
1715, 16posdifd 9361 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  (
( A  x.  C
)  <  ( B  x.  C )  <->  0  <  ( ( B  x.  C
)  -  ( A  x.  C ) ) ) )
1814, 17mpbird 223 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  ( A  x.  C )  <  ( B  x.  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    e. wcel 1686   class class class wbr 4025  (class class class)co 5860   RRcr 8738   0cc0 8739    x. cmul 8744    < clt 8869    - cmin 9039
This theorem is referenced by:  ltmul1  9608
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4316  df-so 4317  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-riota 6306  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-pnf 8871  df-mnf 8872  df-ltxr 8874  df-sub 9041  df-neg 9042
  Copyright terms: Public domain W3C validator